Martellucci CA, Flacco ME, Cappadona R, Bravi F, Mantovani L, Manzoli L. Sars-cov-2 pandemic: an overview. Adv Biol Regul. 2020;77:100736.
Article
Google Scholar
Ledford H. Hundreds of covid trials could provide a deluge of new drugs. Nature 2022;25–7.
Robinson PC, Liew DF, Tanner HL, Grainger JR, Dwek RA, Reisler RB, Steinman L, Feldmann M, Ho L-P, Hussell T, et al. Covid-19 therapeutics: challenges and directions for the future. Proc Natl Acad Sci. 2022;119(15):2119893119.
Article
Google Scholar
Information on covid-19 treatment, prevention and research. U.S. Department of Health and Human Services. https://www.covid19treatmentguidelines.nih.gov/
Islam S, Islam T, Islam MR. New coronavirus variants are creating more challenges to global healthcare system: a brief report on the current knowledge. Clin Pathol. 2022;15:2632010.
Article
Google Scholar
Dzuvor CK, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the covid-19 pandemic era. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(3):1785.
Article
Google Scholar
Khanali J, Azangou-Khyavy M, Asaadi Y, Jamalkhah M, Kiani J. Nucleic acid-based treatments against covid-19: potential efficacy of aptamers and sirnas. Front Microbiol 2021;12.
Yang G, Li Z, Mohammed I, Zhao L, Wei W, Xiao H, Guo W, Zhao Y, Qu F, Huang Y. Identification of sars-cov-2-against aptamer with high neutralization activity by blocking the rbd domain of spike protein 1. Signal Transduc Targeted Ther. 2021;6(1):1–4.
Article
Google Scholar
Zou X, Wu J, Gu J, Shen L, Mao L. Application of aptamers in virus detection and antiviral therapy. Front Microbiol. 2019;10:1462.
Article
Google Scholar
Haberland A, Müller J. Aptamers against covid-19: an untested opportunity. Mini Rev Med Chem 2022.
Hohberger B, Harrer T, Mardin C, Kruse F, Hoffmanns J, Rogge L, Heltmann F, Moritz M, Szewczykowski C, Schottenhamml J, et al. Case report: neutralization of autoantibodies targeting g-protein-coupled receptors improves capillary impairment and fatigue symptoms after covid-19 infection. Front Med 2021;2008.
Weisshoff H, Krylova O, Nikolenko H, Düngen H-D, Dallmann A, Becker S, Göttel P, Müller J, Haberland A. Aptamer bc 007-efficient binder of spreading-crucial sars-cov-2 proteins. Heliyon. 2020;6(11):05421.
Article
Google Scholar
Schmitz A, Weber A, Bayin M, Breuers S, Fieberg V, Famulok M, Mayer G. A sars-cov-2 spike binding dna aptamer that inhibits pseudovirus infection by an rbd-independent mechanism. Angew Chem Int Ed. 2021;60(18):10279–85.
Article
CAS
Google Scholar
Liu X, Wang Y-L, Wu J, Qi J, Zeng Z, Wan Q, Chen Z, Manandhar P, Cavener VS, Boyle NR, et al. Neutralizing aptamers block s/rbd-ace2 interactions and prevent host cell infection. Angew Chem Int Ed. 2021;60(18):10273–8.
Article
CAS
Google Scholar
Song Y, Song J, Wei X, Huang M, Sun M, Zhu L, Lin B, Shen H, Zhu Z, Yang C. Discovery of aptamers targeting the receptor-binding domain of the sars-cov-2 spike glycoprotein. Anal Chem. 2020;92(14):9895–900.
Article
CAS
Google Scholar
Sun M, Liu S, Wei X, Wan S, Huang M, Song T, Lu Y, Weng X, Lin Z, Chen H, et al. Aptamer blocking strategy inhibits sars-cov-2 virus infection. Angew Chem Int Ed. 2021;60(18):10266–72.
Article
CAS
Google Scholar
Das S, MacDonald K, Chang H-YS, Mitzner W. A simple method of mouse lung intubation. JoVE. 2013;73:50318.
Google Scholar
Vandivort TC, An D, Parks WC. An improved method for rapid intubation of the trachea in mice. JoVE. 2016;108:53771.
Google Scholar
Van Hoecke L, Job ER, Saelens X, Roose K. Bronchoalveolar lavage of murine lungs to analyze inflammatory cell infiltration. JoVE. 2017;123:55398.
Google Scholar
Roca CP, Burton OT, Gergelits V, Prezzemolo T, Whyte CE, Halpert R, Kreft Ł, Collier J, Botzki A, Spidlen J, et al. Autospill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12(1):1–16.
Article
Google Scholar
Mosiman VL, Patterson BK, Canterero L, Goolsby CL. Reducing cellular autofluorescence in flow cytometry: an in situ method. Cytom J Int Soc Anal Cytol. 1997;30(3):151–6.
CAS
Google Scholar
Kang H, Bienzle D, Lee GKC, Piché É, Viel L, Odemuyiwa SO, Beeler-Marfisi J. Flow cytometric analysis of equine bronchoalveolar lavage fluid cells in horses with and without severe equine asthma. Vet Pathol. 2022;59(1):91–9.
Article
CAS
Google Scholar
Ai W, Li H, Song N, Li L, Chen H. Optimal method to stimulate cytokine production and its use in immunotoxicity assessment. Int J Environ Res Public Health. 2013;10(9):3834–42.
Article
Google Scholar
Riccio EK, Pratt-Riccio LR, Bianco-Júnior C, Sanchez V, Totino PR, Carvalho LJ, Daniel-Ribeiro CT. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey saimiri sciureus, a non-human primate model for malaria research. Malar J. 2015;14(1):1–17.
Article
CAS
Google Scholar
Maron DM, Ames BN. Revised methods for the salmonella mutagenicity test. Mutat Research/Environ Mutagen Relat Subj. 1983;113(3–4):173–215.
CAS
Google Scholar
Kubo T, Urano K, Utsumi H. Mutagenicity characteristics of 255 environmental chemicals. J Health Sci. 2002;48(6):545–54.
Article
CAS
Google Scholar
Hakura A, Shimada H, Nakajima M, Sui H, Kitamoto S, Suzuki S, Satoh T. Salmonella/human s9 mutagenicity test: a collaborative study with 58 compounds. Mutagenesis. 2005;20(3):217–28.
Article
CAS
Google Scholar
Ferguson LR, Denny WA. The genetic toxicology of acridines. Mutat Research/Rev Genet Toxicol. 1991;258(2):123–60.
Article
CAS
Google Scholar
Prival MJ, Zeiger E. Chemicals mutagenic in salmonella typhimurium strain ta1535 but not in ta100. Mutat Research/Geneti Toxicol Environ Mutagen. 1998;412(3):251–60.
Article
CAS
Google Scholar
Perschbacher K, Smestad JA, Peters JP, Standiford MM, Denic A, Wootla B, Warrington AE, Rodriguez M, Maher LJ III. Quantitative pcr analysis of dna aptamer pharmacokinetics in mice. Nucleic Acid Ther. 2015;25(1):11–9.
Article
CAS
Google Scholar
Shirota H, Klinman DM. Recent progress concerning cpg dna and its use as a vaccine adjuvant. Expert Rev Vaccines. 2014;13(2):299–312.
Article
CAS
Google Scholar
Juffermans NP, Leemans JC, Florquin S, Verbon A, Kolk AH, Speelman P, van Deventer SJ, Van Der Poll T. Cpg oligodeoxynucleotides enhance host defense during murine tuberculosis. Infect Immun. 2002;70(1):147–52.
Article
CAS
Google Scholar
Talbot SR, Biernot S, Bleich A, van Dijk RM, Ernst L, Häger C, Helgers SOA, Koegel B, Koska I, Kuhla A, et al. Defining body-weight reduction as a humane endpoint: a critical appraisal. Lab Anim. 2020;54(1):99–110.
Article
CAS
Google Scholar
Watanabe H, Numata K, Ito T, Takagi K, Matsukawa A. Innate immune response in th1-and th2-dominant mouse strains. Shock. 2004;22(5):460–6.
Article
CAS
Google Scholar
Liu T, Matsuguchi T, Tsuboi N, Yajima T, Yoshikai Y. Differences in expression of toll-like receptors and their reactivities in dendritic cells in balb/c and c57bl/6 mice. Infect Immun. 2002;70(12):6638–45.
Article
CAS
Google Scholar
Thiel WH, Esposito CL, Dickey DD, Dassie JP, Long ME, Adam J, Streeter J, Schickling B, Takapoo M, Flenker KS, et al. Smooth muscle cell-targeted rna aptamer inhibits neointimal formation. Mol Ther. 2016;24(4):779–87.
Article
CAS
Google Scholar
Berger A, Drosten C, Doerr H, Stürmer M, Preiser W. Severe acute respiratory syndrome (sars)-paradigm of an emerging viral infection. J Clin Virol. 2004;29(1):13–22.
Article
CAS
Google Scholar
Lau SK, Lee P, Tsang AK, Yip CC, Tse H, Lee RA, So L-Y, Lau Y-L, Chan K-H, Woo PC, et al. Molecular epidemiology of human coronavirus oc43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol. 2011;85(21):11325–37.
Article
CAS
Google Scholar
Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 2020;64(5):00399.
Article
Google Scholar
Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, Liu L, Shan H, Lei C-L, Hui DS, et al. Clinical characteristics of coronavirus disease 2019 in china. N Engl J Med. 2020;382(18):1708–20.
Article
CAS
Google Scholar
Gautret P, Lagier J-C, Parola P, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, et al. Hydroxychloroquine and azithromycin as a treatment of covid-19: results of an open-label non-randomized clinical trial. Int J Antimicrobagents. 2020;56(1):105949.
Article
CAS
Google Scholar
Zheng J, Wong L-YR, Li K, Verma AK, Ortiz ME, Wohlford-Lenane C, Leidinger MR, Knudson CM, Meyerholz DK, McCray PB, et al. Covid-19 treatments and pathogenesis including anosmia in k18-hace2 mice. Nature. 2021;589(7843):603–7.
Article
CAS
Google Scholar
Oladunni FS, Park J-G, Pino PA, Gonzalez O, Akhter A, Allué-Guardia A, Olmo-Fontánez A, Gautam S, Garcia-Vilanova A, Ye C, et al. Lethality of sars-cov-2 infection in k18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun. 2020;11(1):1–17.
Article
Google Scholar
Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.
Article
CAS
Google Scholar
Torabi R, Ranjbar R, Halaji M, Heiat M. Aptamers, the bivalent agents as probes and therapies for coronavirus infections: a systematic review. Mol Cell Probes. 2020;53:101636.
Article
CAS
Google Scholar
Valero J, Civit L, Dupont DM, Selnihhin D, Reinert LS, Idorn M, Israels BA, Bednarz AM, Bus C, Asbach B, et al. A serum-stable rna aptamer specific for sars-cov-2 neutralizes viral entry. Proc Natl Acad Sci. 2021;118(50):2112942118.
Article
Google Scholar
Amini R, Zhang Z, Li J, Gu J, Brennan JD, Li Y. Aptamers for sars-cov-2: isolation, characterization, and diagnostic and therapeutic developments. Anal Sens 2022;202200012.
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Peacock SJ, et al. Sars-cov-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409–24.
Article
CAS
Google Scholar
Benschop RJ, Tuttle JL, Zhang L, Poorbaugh J, Kallewaard NL, Vaillancourt P, Crisp M, Trinh TNV, Freitas JJ, Beasley S, et al. The anti-sars-cov-2 monoclonal antibody, bamlanivimab, minimally impacts the endogenous immune response to covid-19 vaccination. Sci Transl Med 2022;3041.
Van Der Straten K, van Gils MJ, De Taeye SW, De Bree GJ. Optimization of anti-sars-cov-2 neutralizing antibody therapies: Roadmap to improve clinical effectiveness and implementation. Front Med Technol 2022;4
Schultz-Cherry S, McGargill MA, Thomas PG, Estepp JH, Gaur AH, Allen EK, Allison KJ, Tang L, Webby RJ, Cherry SD, et al. Cross-reactive antibody response to mrna sars-cov-2 vaccine after recent covid-19-specific monoclonal antibody therapy. Open Forum Infect Dis. 2021;8:420.
Article
Google Scholar
Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206–14.
Article
CAS
Google Scholar
Bouchard P, Hutabarat R, Thompson K. Discovery and development of therapeutic aptamers. Ann Rev Pharmacol Toxicol. 2010;50:237–57.
Article
CAS
Google Scholar