Noteborn MH, Koch G. Chicken anaemia virus infection: molecular basis of pathogenicity. Avian Pathol. 1995;24:11–31.
Article
CAS
Google Scholar
Rosario K, Breitbart M, Harrach B, Segalés J, Delwart E, Biagini P, Varsani A. Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus. Arch Virol. 2017;162:1447–63.
Article
CAS
Google Scholar
Yuasa N, Taniguchi T, Yoshida I. Isolation and some characteristics of an agent inducing Anemia in chicks. Avian Dis. 1979;23:366.
Article
Google Scholar
Miller MM, Schat KA. Chicken infectious Anemia virus: an example of the ultimate host–parasite relationship. Avian Dis. 2004;48:734–45.
Article
Google Scholar
Meehan BM, Todd D, Creelan JL, Earle JA, Hoey EM, McNulty MS. Characterization of viral DNAs from cells infected with chicken anaemia agent: sequence analysis of the cloned replicative form and transfection capabilities of cloned genome fragments. Arch Virol. 1992;124:301–19.
Article
CAS
Google Scholar
Schat KA. Chicken anemia virus. Curr Top Microbiol Immunol. 2009;331:151–83.
CAS
PubMed
Google Scholar
Koch G, van Roozelaar DJ, Verschueren CA, van der Eb AJ, Noteborn MH. Immunogenic and protective properties of chicken anaemia virus proteins expressed by baculovirus. Vaccine. 1995;13:763–70.
Article
CAS
Google Scholar
Natesan S. Anti-neoplastic effect of chicken anemia virus VP3 protein (apoptin) in Rous sarcoma virus-induced tumours in chicken. J Gen Virol. 2006;87:2933–40.
Article
CAS
Google Scholar
Greber UF, Webster P, Weber J, Helenius A. The role of the adenovirus protease on virus entry into cells. EMBO J. 1996;15:1766–77.
Article
CAS
Google Scholar
Fletcher TM 3rd, Brichacek B, Sharova N, Newman MA, Stivahtis G, Sharp PM, Emerman M, Hahn BH, Stevenson M. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV (SM). EMBO J. 1996;15:6155–65.
Article
CAS
Google Scholar
Lacorte C, Lohuis H, Goldbach R, Prins M. Assessing the expression of chicken anemia virus proteins in plants. Virus Res. 2007;129:80–6.
Article
CAS
Google Scholar
Cheng JH, Sheu SC, Lien YY, Lee MS, Chen HJ, Su WH. Identification of the NLS and NES motifs of VP2 from chicken anemia virus and the interaction of VP2 with mini-chromosome maintenance protein 3. BMC Vet Res. 2012;8:15.
Article
CAS
Google Scholar
Poon IK, Oro C, Dias MM, Zhang J, Jans DA. Apoptin nuclear accumulation is modulated by a CRM1-recognized nuclear export signal that is active in normal but not in tumor cells. Cancer Res. 2005;65:7059–64.
Article
CAS
Google Scholar
Lai G-H, Lien Y-Y, Lin M-K, Cheng J-H, Tzen JTC, Sun F-C, Lee M-S, Chen H-J, Lee M-S. VP2 of chicken Anaemia virus interacts with Apoptin for Down-regulation of apoptosis through De-phosphorylated threonine 108 on Apoptin. Sci Rep. 2017;7.
Wang QM, Fan GC, Chen JZ, Chen HP, He FC. A putative NES mediates cytoplasmic localization of Apoptin in normal cells. Acta Biochim Biophys Sin. 2004;36:817–23.
Article
CAS
Google Scholar
Sun F, Pan W, Gao H, Qi X, Qin L, Wang Y, Gao Y, Wang X. Identification of the interaction and interaction domains of chicken anemia virus VP2 and VP3 proteins. Virology. 2018;513:188–94.
Article
CAS
Google Scholar
McNulty MS, Connor TJ, McNeilly F, McLoughlin MF, Kirkpatrick KS. Preliminary characterisation of isolates of chicken anaemia agent from the United Kingdom. Avian Pathol. 1990;19:67–73.
Article
CAS
Google Scholar
McNulty MS, Mackie DP, Pollock DA, McNair J, Todd D, Mawhinney KA, Connor TJ, McNeilly F. Production and preliminary characterization of monoclonal antibodies to chicken anemia agent. Avian Dis. 1990;34:352–8.
Article
CAS
Google Scholar
Scott AN, McNulty MS, Todd D. Characterisation of a chicken anaemia virus variant population that resists neutralisation with a group-specific monoclonal antibody. Arch Virol. 2001;146:713–28.
Article
CAS
Google Scholar
Trinh DQ, Yamaguchi S, Bui VN, Baatartsogt T, Imai K, Ogawa H, Kizito MK. Characterization of mAbs to chicken anemia virus and epitope mapping on its viral protein, VP1. J Gen Virol. 2015;96:1086–97.
Article
CAS
Google Scholar
Noteborn MH, Verschueren CA, Koch G, Van der Eb AJ. Simultaneous expression of recombinant baculovirus-encoded chicken anaemia virus (CAV) proteins VP1 and VP2 is required for formation of the CAV-specific neutralizing epitope. J Gen Virol. 1998;79(Pt 12):3073–7.
Article
CAS
Google Scholar
Lien YY, Huang CH, Sun FC, Sheu SC, Lu TC, Lee MS, Hsueh SC, Chen HJ. Development and characterization of a potential diagnostic monoclonal antibody against capsid protein VP1 of the chicken anemia virus. J Vet Sci. 2012;13:73–9.
Article
Google Scholar
Hu G, Zheng W, Li A, Mu Y, Shi M, Li T, Zou H, Shao H, Qin A, Ye J. A novel CAV derived cell-penetrating peptide efficiently delivers exogenous molecules through caveolae-mediated endocytosis. Vet Res. 2018;49:16.
Article
Google Scholar
Lee MS, Lien YY, Feng SH, Huang RL, Tsai MC, Chang WT, Chen HJ. Production of chicken anemia virus (CAV) VP1 and VP2 protein expressed by recombinant Escherichia coli. Process Biochem. 2009;44:390–5.
Article
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Article
CAS
Google Scholar
Brown NP, Leroy C, Sander C. MView: a web-compatible database search or multiple alignment viewer. Bioinformatics. 1998;14:380–1.
Article
CAS
Google Scholar
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35:W585–7.
Article
Google Scholar
Nguyen Ba AN, Pogoutse A, Provart N, Moses AM. NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC bioinformatics. 2009;10:202.
Article
Google Scholar
la Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S. Analysis and prediction of leucine-rich nuclear export signals. Protein Eng, Des Sel. 2004;17:527–36.
Article
Google Scholar
Gould CM, Diella F, Via A, Puntervoll P, Gemund C, Chabanis-Davidson S, Michael S, Sayadi A, Bryne JC, Chica C, et al. ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res. 2010;38:D167–80.
Article
CAS
Google Scholar
Todd D. Circoviruses: immunosuppressive threats to avian species: a review. Avian Pathol. 2000;29:373–94.
Article
CAS
Google Scholar
Todd D, Creelan JL, Mackie DP, Rixon F, McNulty MS. Purification and biochemical characterization of chicken anaemia agent. J Gen Virol. 1990;71(Pt 4):819–23.
Article
CAS
Google Scholar
Meehan BM, McNeilly F, Todd D, Kennedy S, Jewhurst VA, Ellis JA, Hassard LE, Clark EG, Haines DM, Allan GM. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol. 1998;79(Pt 9):2171–9.
Article
CAS
Google Scholar
Phan TG, Li L, O'Ryan MG, Cortes H, Mamani N, Bonkoungou IJ, Wang C, Leutenegger CM, Delwart E. A third gyrovirus species in human faeces. J Gen Virol. 2012;93:1356–61.
Article
CAS
Google Scholar
Peters MA, Jackson DC, Crabb BS, Browning GF. Chicken anemia virus VP2 is a novel dual specificity protein phosphatase. J Biol Chem. 2002;277:39566–73.
Article
CAS
Google Scholar
Peters MA, Crabb BS, Washington EA, Browning GF. Site-directed mutagenesis of the VP2 gene of chicken anemia virus affects virus replication, cytopathology and host-cell MHC class I expression. J Gen Virol. 2006;87:823–31.
Article
CAS
Google Scholar
Yamaguchi S, Imada T, Kaji N, Mase M, Tsukamoto K, Tanimura N, Yuasa N. Identification of a genetic determinant of pathogenicity in chicken anaemia virus. J Gen Virol. 2001;82:1233–8.
Article
CAS
Google Scholar
Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R. The HIV-1 rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell. 1995;82:475–83.
Article
CAS
Google Scholar
Wen W, Meinkoth JL, Tsien RY, Taylor SS. Identification of a signal for rapid export of proteins from the nucleus. Cell. 1995;82:463–73.
Article
CAS
Google Scholar
Cao S, Liu X, Yu M, Li J, Jia X, Bi Y, Sun L, Gao GF, Liu W. A nuclear export signal in the matrix protein of influenza a virus is required for efficient virus replication. J Virol. 2012;86:4883–91.
Article
CAS
Google Scholar
Huang S, Chen J, Chen Q, Wang H, Yao Y, Chen J, Chen Z. A second CRM1-dependent nuclear export signal in the influenza a virus NS2 protein contributes to the nuclear export of viral ribonucleoproteins. J Virol. 2013;87:767–78.
Article
CAS
Google Scholar
Onder Z, Chang V, Moroianu J. Nuclear export of cutaneous HPV8 E7 oncoprotein is mediated by a leucine-rich nuclear export signal via a CRM1 pathway. Virology. 2015;474:28–33.
Article
CAS
Google Scholar
Booth DS, Cheng Y, Frankel AD. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA. Elife. 2014;3:e04121.
Article
Google Scholar
Heilman DW, Teodoro JG, Green MR. Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies. J Virol. 2006;80:7535–45.
Article
CAS
Google Scholar