Li HW, Lucy AP, Guo HS, Li WX, Ji LH, Wong SM, Ding SW. Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J. 1999;18:2683–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Genovés A, Navarro JA, Pallás V. Functional analysis of the five melon necrotic spot virus genome-encoded proteins. J gen Virol. 2006;87:2371–80.
Article
PubMed
Google Scholar
Zurbriggen MD, Carrillo N, Hajirezaei MR. ROS signaling in the hypersensitive response: when, where and what for? Plant Signal Behav. 2010;5:393–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murota K, Shimura H, Takeshita M, Masuta C. Interaction between cucumber mosaic virus 2b protein and plant catalase induces a specific necrosis in association with proteasome activity. Plant Cell Rep. 2017;35:37–47.
Article
Google Scholar
Hallwass M, de Oliveira AS, de Campos Dianese E, Lohuis D, Boiteux LS, Inoue-Nagata AK, Resende RO, Kormelink R. The tomato spotted wilt virus cell-to-cell movement protein (NSm) triggers a hypersensitive response in Sw-5-containing resistant tomato lines and in Nicotiana benthamiana transformed with the functional Sw-5b resistance gene copy. Mol Plant Pathol. 2014;15:871–80.
CAS
PubMed
PubMed Central
Google Scholar
Peiró A, Cañizares MC, Rubio L, López C, Moriones E, Aramburu J, Sánchez-Navarro J. The movement protein (NSm) of tomato spotted wilt virus is the avirulence determinant in the tomato Sw-5 gene-based resistance. Mol Plant Pathol. 2014;15:802–13.
Article
PubMed
PubMed Central
Google Scholar
Sanfaçon H, Wellink J, Le Gall O, Karasev A, Van der Vlugt R, Wetzel T. Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus. and the proposed genus Torradovirus Arch Virol. 2009;154:899–907.
Article
PubMed
Google Scholar
Ferriol I, Vallino M, Ciuffo M, Nigg JC, Zamora-Macorra EJ, Falk BW, Turina M. The Torradovirus-specific RNA2-ORF1 protein is necessary for plant systemic infection. Mol Plant Pathol. 2017. https://doi.org/10.1111/mpp.12615.
Amari K, González-Ibeas D, Gómez P, Sempere RN, Sánchez-Pina MA, Aranda MA, Diaz-Pendon JA, Navas-Castillo J, Moriones E, Blanca J, Hernandez-Gallardo MD, Anastasio G. Tomato torrado virus is transmitted by Bemisia tabaci and infects pepper and eggplant in addition to tomato. Plant Dis. 2008;92:1139.
Article
PubMed
Google Scholar
Pospieszny H, Borodynko N, Obrepalska-Steplowska A, Hasiow B. The first report of tomato torrado virus in Poland. Plant Dis. 2007;91:1364.
Article
PubMed
Google Scholar
Verbeek M, van Bekkum PJ, Dullemans AM, van der Vlugt RA. Torradoviruses are transmitted in a semi-persistent and stylet-borne manner by three whitefly vector. Virus Res. 2014;186:55–60.
Article
CAS
PubMed
Google Scholar
Pospieszny H, Budziszewska M, Hasiow-Jaroszewska B, Obrepalska-Steplowska A, Borodynko N. Biological and molecular characterization of polish isolates of tomato torrado virus. J Phytopathol. 2010;158:56–62.
Article
CAS
Google Scholar
Alfaro-Fernández A, Córdoba-Sellés C, Cebrián MC, Herrera-Vásquez JA, Sánchez-Navarro JA, Juárez M, Espino A, Martín R, Jordá C. First report of Tomato torrado virus on weed hosts in Spain. Plant Dis. 2008;92:831.
Article
PubMed
Google Scholar
Wieczorek P, Obrępalska-Stęplowska A. A single amino acid substitution in movement protein of tomato torrado virus influences ToTV infectivity in Solanum lycopersicum. Virus Res. 2016;213:32–6.
Article
CAS
PubMed
Google Scholar
Wieczorek P, Obrępalska-Stęplowska A. The N-terminal fragment of the tomato torrado virus RNA1-encoded polyprotein induces a hypersensitive response (HR)-like reaction in Nicotiana benthamiana. Arch Virol. 2016;161:1849–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alfaro-Fernández A, Cebrián MC, Herrera-Vásquez JA, Córdoba-Sellés MC, Sánchez-Navarro JA, Jordá C. Molecular variability of Spanish and Hungarian isolates of Tomato torrado virus. Plant Pathol. 2010;59:785–93.
Article
Google Scholar
Budziszewska M, Pospieszny H, Obrępalska-Stęplowska A. Genome characteristics, phylogeny and varying host specificity of polish Kra and Ros isolates of Tomato torrado virus. J Phytopathol. 2016;164:281–5.
Article
Google Scholar
Budziszewska M, Wieczorek P, Zhang Y, Frishman D, Obrępalska-Stęplowska A. Genetic variability within the polish tomato torrado virus Kra isolate caused by deletions in the 3′-untranslated region of genomic RNA1. Virus Res. 2014;185:47–52.
Article
CAS
PubMed
Google Scholar
Budziszewska M, Obrepalska-Steplowska A, Wieczorek P, Pospieszny H. The nucleotide sequence of a polish isolate of tomato torrado virus. Virus Genes. 2008;37:400–6.
Article
CAS
PubMed
Google Scholar
Verbeek M, Dullemans AM, van den Heuvel JF, Maris PC, van der Vlugt RA. Tomato marchitez virus, a new plant picorna-like virus from tomato related to Tomato torrado virus. Arch Virol. 2008;153:127–34.
Article
CAS
PubMed
Google Scholar
Wieczorek P, Budziszewska M, Obrępalska-Steplowska A. Construction of infectious clones of tomato torrado virus and their delivery by agroinfiltration. Arch Virol. 2015;160:517–21.
Article
CAS
PubMed
Google Scholar
Wieczorek P, Wrzesińska B, Obrępalska-Stęplowska A. Assessment of reference gene stability influenced by extremely divergent disease symptoms in Solanum lycopersicum L. J Virol Methods. 2013;194:161–8.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
PubMed
Google Scholar
Yen Y, Green PJ. Identification and properties of the major ribonucleases of Arabidopsis thaliana. Plant Physiol. 1991;97:487–93.
Article
Google Scholar
Christensen JH, Bauw G, Welinder KG, Van Montagu M, Boerjan W. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol. 1998;118:125–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999;41:95–8.
CAS
Google Scholar
Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 2003;22:5690–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scholthof HB, Scholthof KB, Jackson AO. Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell. 1995;7:1157–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voinnet O. RNA silencing as a plant immune system against viruses. Trends Genet. 2001;17:449–59.
Article
CAS
PubMed
Google Scholar
Cao X, Zhou P, Zhang X, Zhu S, Zhong X, Xiao Q, Ding B, Li Y. Identification of an RNA silencing suppressor from a plant double-stranded RNA virus. J Virol. 2005;79:13018–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruiz-Ruiz S, Soler N, Sánchez-Navarro J, Fagoaga C, López C, Navarro L, Moreno P, Peña L, Flores R. Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Mol Plant-Microbe Interact. 2013;26:306–18.
Article
CAS
PubMed
Google Scholar
Young BA, Stenger DC, Qu F, Morris TJ, Tatineni S, French R. Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms. Virus Res. 2012;63:672–7.
Article
Google Scholar
Zhou ZS, Dell'Orco M, Saldarelli P, Turturo C, Minafra A, Martelli GP. Identification of an RNA-silencing suppressor in the genome of grapevine virus a. J Gen Virol. 2006;87:2387–95.
Article
CAS
PubMed
Google Scholar
Hussain M, Mansoor S, Iram S, Fatima AN, Zafar Y. The nuclear shuttle protein of tomato leaf curl New Delhi virus is a pathogenicity determinant. J Virol. 2005;79:4434–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luna AP, Morilla G, Voinnet O, Bejarano ER. Functional analysis of gene-silencing suppressors from tomato yellow leaf curl disease viruses. Mol Plant-Microbe Interact. 2012;25:1294–306.
Article
CAS
PubMed
Google Scholar
Van Wezel R, Liu H, Tien P, Stanley J, Hong Y. Gene C2 of the monopartite geminivirus tomato yellow leaf curl virus-China encodes a pathogenicity determinant that is localized in the nucleus. Mol Plant-Microbe Interact. 2001;14:1125–8.
Article
PubMed
Google Scholar
Tahir MN, Mansoor S. βC1 of chili leaf curl betasatellite is a pathogenicity determinant. Virol J. 2011;8:509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguilar E, Almendral D, Allende L, Pacheco R, Chung BN, Canto T, Tenllado F. The P25 protein of potato virus X (PVX) is the main pathogenicity determinant responsible for systemic necrosis in PVX-associated synergisms. J Virol. 2015;89:2090–103.
Article
PubMed
Google Scholar
Hu X, Nie X, He C, Xiong X. Differential pathogenicity of two different recombinant PVY(NTN) isolates in Physalis floridana is likely determined by the coat protein gene. Virol J. 2011;8:207.
Article
PubMed
PubMed Central
Google Scholar
Lan P, Yeh WB, Tsai CW, Lin NS. A unique glycine-rich motif at the N-terminal region of bamboo mosaic virus coat protein is required for symptom expression. Mol Plant-Microbe Interact. 2010;23:903–14.
Article
CAS
PubMed
Google Scholar
Park SH, Sit TL, Kim KH, Lommel SA. The red clover necrotic mosaic virus capsid protein N-terminal lysine-rich motif is a determinant of symptomatology and virion accumulation. Mol Plant Pathol. 2012;13:744–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canto T, MacFarlane SA, Palukaitis P. ORF6 of Tobacco mosaic virus is a determinant of viral pathogenicity in Nicotiana benthamiana. J. Gen. Virol. 2004;85:3123–3133.
Torres MA, Jones JD, Dangl JL. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 2006;141:373–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dieng H, Satho T, Hassan AA, Aziz AT, Morales RE, Hamid SA, Miake F, Abubakar S. Peroxidase activity after viral infection and whitefly infestation in juvenile and mature leaves of Solanum lycopersicum. J Phytopathol. 2011;159:707–12.
Article
CAS
Google Scholar
Clarke SF, Guy PL, Burritt DJ, Jameson PE. Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant. 2002;114:157–64.
Article
CAS
PubMed
Google Scholar
MacIntosh GC, Hillwig MS, Meyer A, Flagel L. RNase T2 genes from rice and the evolution of secretory ribonucleases in plants. Mol Gen Genomics. 2010;283:381–96.
Article
CAS
Google Scholar
Hillwig MS, Contento AL, Meyer A, Ebany D, Bassham DC, Macintosh GC. RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proc Natl Acad Sci U S A. 2011;108:1093–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
LeBrasseur ND, MacIntosh GC, Pérez-Amador MA, Saitoh M, Green PJ. Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic signaling pathway. Plant J. 2002;29:393–403.
Article
CAS
PubMed
Google Scholar
Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 2004;37:186–98.
Article
CAS
PubMed
Google Scholar
Liu X, Huang B, Lin J, Fei J, Chen Z, Pang Y, Sun X, Tang K. A novel pathogenesis-related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress- and pathogen-inducible. J Plant Physiol. 2006;163:546–56.
Article
CAS
PubMed
Google Scholar
Choi DS, Hwang IS, Hwang BK. Requirement of the cytosolic interaction between PATHOGENESIS-RELATED PROTEIN 10 and LEUCINE-RICH REPEAT PROTEIN1 for cell death and defense signaling in pepper. Plant Cell. 2012;24:1675–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim NH, Hwang BK. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling. Plant J. 2015;81:81–94.
Article
PubMed
Google Scholar