Honess RW, Roizman B: Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 1974, 14: 8-19.
PubMed Central
CAS
PubMed
Google Scholar
Fraser NW, Block T, Spivack JG: The latency-associated transcripts of herpes simplex virus: RNA in search of function. Virology 1992, 191: 1-8. 10.1016/0042-6822(92)90160-Q
Article
CAS
PubMed
Google Scholar
Lee LY, Schaffer PA: A virus with a mutation in the ICP4-binding site in the L/ST promoter of herpes simplex virus type 1, but not a virus with a mutation in open reading frame P, exhibits cell-type-specific expression of gamma(1)34.5 transcripts and latency-associated transcripts. J Virol 1998, 72: 4250-4264.
PubMed Central
CAS
PubMed
Google Scholar
Farrell MJ, Margolis TP, Gomes WA, Feldman LT: Effect of the transcription start region of the herpes simplex virus type 1 latency-associated transcript promoter on expression of productively infected neurons in vivo. J Virol 1994, 68: 5337-5343.
PubMed Central
CAS
PubMed
Google Scholar
Everett RD, Orr A, Preston CM: A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO Journal 1998, 17: 7161-7169. 10.1093/emboj/17.24.7161
Article
PubMed Central
CAS
PubMed
Google Scholar
Preston CM: Repression of viral transcription during herpes simplex virus latency. J Gen Virol 2000, 81: 1-19.
Article
CAS
PubMed
Google Scholar
Mulvey M, Poppers J, Sternberg D, Mohr I: Regulation of eIF2alpha phosphorylation by different functions that act during discrete phases in the herpes simplex virus type 1 life cycle. J Virol 2003, 77: 10917-10928. 10.1128/JVI.77.20.10917-10928.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Mohr I: Phosphorylation and dephosphorylation events that regulate viral mRNA translation. Virus Res 2006, 119: 89-99. 10.1016/j.virusres.2005.10.009
Article
CAS
PubMed
Google Scholar
Eidson KM, Hobbs WE, Manning BJ, Carlson P, DeLuca NA: Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J Virol 2002, 76: 2180-2191. 10.1128/jvi.76.5.2180-2191.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin R, Noyce RS, Collins SE, Everett RD, Mossman KL: The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J Virol 2004, 78: 1675-1684. 10.1128/JVI.78.4.1675-1684.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Leib DA, Machalek MA, Williams BR, Silverman RH, Virgin HW: Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci U S A 2000, 97: 6097-6101. 10.1073/pnas.100415697
Article
PubMed Central
CAS
PubMed
Google Scholar
Aaronson DS, Horvath CM: A road map for those who know JAK-STAT. Science 2002, 296: 1653-1655. 10.1126/science.1071545
Article
CAS
PubMed
Google Scholar
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW: Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002, 285: 1-24. 10.1016/S0378-1119(02)00398-0
Article
CAS
PubMed
Google Scholar
Harle P, Sainz BJ, Carr DJ, Halford WP: The immediate-early protein, ICP0, is essential for the resistance of herpes simplex virus to interferon-alpha/beta. Virology 2002, 293: 295-304. 10.1006/viro.2001.1280
Article
PubMed
Google Scholar
Mossman KL, Saffran HA, Smiley JR: Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 2000, 74: 2052-2056. 10.1128/JVI.74.4.2052-2056.2000
Article
PubMed Central
CAS
PubMed
Google Scholar
Mossman KL, Smiley JR: Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J Virol 2002, 76: 1995-1998. 10.1128/JVI.76.4.1995-1998.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW: Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 1999, 189: 663-672. 10.1084/jem.189.4.663
Article
PubMed Central
CAS
PubMed
Google Scholar
Cerveny M, Hessefort S, Yang K, Cheng G, Gross M, He B: Amino acid substitutions in the effector domain of the gamma 34.5 protein of herpes simplex virus 1 have differential effects on viral response to interferon-alpha. Virology 2003, 307: 290-300. 10.1016/S0042-6822(02)00075-2
Article
CAS
PubMed
Google Scholar
Luker GD, Prior JL, Song J, Pica CM, Leib DA: Bioluminescence imaging reveals systemic dissemination of herpes simplex virus type 1 in the absence of interferon receptors. J Virol 2003, 77: 11082-11093. 10.1128/JVI.77.20.11082-11093.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Vollstedt S, Arnold S, Schwerdel C, Franchini M, Alber G, Di Santo JP, Ackermann M, Suter M: Interplay between Alpha/Beta and Gamma Interferons with B, T, and Natural Killer Cells in the Defense against Herpes Simplex Virus Type 1. J Virol 2004, 78: 3846-3850. 10.1128/JVI.78.8.3846-3850.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Chee AV, Lopez P, Pandolfi PP, Roizman B: Promyelocytic Leukemia Protein Mediates Interferon-Based Anti-Herpes Simplex Virus 1 Effects. J Virol 2003,77(12):7101-7105. 10.1128/JVI.77.12.7101-7105.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Ellison AR, Yang L, Voytek C, Margolis TP: Establishment of latent herpes simplex virus type 1 infection in resistant, sensitive, and immunodeficient mouse strains. Virology 2000, 268: 17-28. 10.1006/viro.1999.0158
Article
CAS
PubMed
Google Scholar
Halford WP, Schaffer PA: Optimized viral dose and transient immunosuppression enable herpes simplex virus ICP0-null mutants to establish wild-type levels of latency in vivo. J Virol 2000, 74: 5957-5967. 10.1128/JVI.74.13.5957-5967.2000
Article
PubMed Central
CAS
PubMed
Google Scholar
Halford WP, Schaffer PA: ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J Virol 2001, 75: 3240-3249. 10.1128/JVI.75.7.3240-3249.2001
Article
PubMed Central
CAS
PubMed
Google Scholar
Longerich T, Eisenbach C, Penzel R, Kremer T, Flechtenmacher C, Helmke B, Encke J, Kraus T, Schirmacher P: Recurrent herpes simplex virus hepatitis after liver retransplantation despite acyclovir therapy. Liver Transpl 2005, 11: 1289-1294. 10.1002/lt.20567
Article
PubMed
Google Scholar
Halford WP, Halford KJ, Pierce AT: Mathematical analysis demonstrates that interferons-beta and -gamma interact in a multiplicative manner to disrupt herpes simplex virus replication. J Theor Biol 2005, 235: 439-454. 10.1016/j.jtbi.2004.12.007
Article
Google Scholar
Pierce AT, DeSalvo J, Foster TP, Kosinski A, Weller SK, Halford WP: Interferon-beta and interferon-gamma synergize to block viral DNA and virion synthesis in herpes simplex virus-infected cells. J Gen Virol 2005, 86: 2421-2432. 10.1099/vir.0.80979-0
Article
PubMed Central
CAS
PubMed
Google Scholar
Valyi-Nagy T, Deshmane SL, Raengsakulrach B, Nicosia M, Gesser RM, Wysocka M, Dillner A, Fraser NW: Herpes simplex virus type 1 mutant strain in1814 establishes a unique, slowly progressing infection in SCID mice. J Virol 1992, 66: 7336-7345.
PubMed Central
CAS
PubMed
Google Scholar
Valyi-Nagy T, Gesser RM, Raengsakulrach B, Deshmane SL, Randazzo BP, Dillner AJ, Fraser NW: A thymidine kinase-negative HSV-1 strain establishes a persistent infection in SCID mice that features uncontrolled peripheral replication but only marginal nervous system involvement. Virology 1994, 199: 484-490. 10.1006/viro.1994.1150
Article
CAS
PubMed
Google Scholar
Everett RD: ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 2000, 22: 761-770. 10.1002/1521-1878(200008)22:8<761::AID-BIES10>3.0.CO;2-A
Article
CAS
PubMed
Google Scholar
Halford WP, Kemp CD, Isler JA, Davido DJ, Schaffer PA: ICP0, ICP4, or VP16 expressed from adenovirus vectors induces reactivation of latent herpes simplex virus type 1 in primary cultures of latently infected trigeminal ganglion cells. J Virol 2001, 75: 6143-6153. 10.1128/JVI.75.13.6143-6153.2001
Article
PubMed Central
CAS
PubMed
Google Scholar
Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT: RNA complementary to a herpesvirus a gene mRNA is prominent in latently infected neurons. Science 1987, 235: 1056-1059.
Article
CAS
PubMed
Google Scholar
Farrell MJ, Dobson AT, Feldman LT: Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci U S A 1991, 88: 790-794. 10.1073/pnas.88.3.790
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown SM, Harland J, MacLean AR, Podlech J, Clements JB: Cell type and cell state determine differential in vitro growth of non-neurovirulent ICP34.5-negative herpes simplex virus types 1 and 2. J Gen Virol 1994, 75: 2367-2377.
Article
CAS
PubMed
Google Scholar
Bolovan CA, Sawtell NM, Thompson RL: ICP34.5 mutants of herpes simplex virus type 1 strain 17syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J Virol 1994, 68: 48-55.
PubMed Central
CAS
PubMed
Google Scholar
Mohr I, Gluzman Y: A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J 1996, 15: 4759-4766.
PubMed Central
CAS
PubMed
Google Scholar
Valyi-Nagy T, Fareed MU, O'Keefe JS, Gesser RM, MacLean AR, Brown SM, Spivack JG, Fraser NW: The herpes simplex virus type 1 strain 17+ gamma 34.5 deletion mutant 1716 is avirulent in SCID mice. J Gen Virol 1994, 75: 2059-2063.
Article
CAS
PubMed
Google Scholar
Speck P, Simmons A: Precipitous clearance of herpes simplex virus antigens from the peripheral nervous systems of experimentally infected C57BL/10 mice. J Gen Virol 1998, 79: 561-564.
Article
CAS
PubMed
Google Scholar
Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL: CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 2000, 191: 1459-1466. 10.1084/jem.191.9.1459
Article
PubMed Central
CAS
PubMed
Google Scholar
Khanna KM, Lepisto AJ, Hendricks RL: Immunity to latent viral infection: many skirmishes but few fatalities. Trends Immunol 2004, 25: 230-234. 10.1016/j.it.2004.02.010
Article
CAS
PubMed
Google Scholar
Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL: Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 2000, 287: 1500-1503. 10.1126/science.287.5457.1500
Article
CAS
PubMed
Google Scholar
Thompson RL, Sawtell NM: Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 2001, 75: 6660-6675. 10.1128/JVI.75.14.6660-6675.2001
Article
PubMed Central
CAS
PubMed
Google Scholar
Branco FJ, Fraser NW: Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol 2005, 79: 9019-9025. 10.1128/JVI.79.14.9019-9025.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Feldman LT, Ellison AR, Voytek CC, Yang L, Krause P, Margolis TP: Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A 2002, 99: 978-983. 10.1073/pnas.022301899
Article
PubMed Central
CAS
PubMed
Google Scholar
Sawtell NM: Detection and quantification of the rare latently infected cell undergoing herpes simplex virus transcriptional activation in the nervous system in vivo. Methods Mol Biol 2005, 292: 57-72.
CAS
PubMed
Google Scholar
Bourne N, Bravo FJ, Francotte M, Bernstein DI, Myers MG, Slaoui M, Stanberry LR: Herpes simplex virus (HSV) type 2 glycoprotein D subunit vaccines and protection against genital HSV-1 or HSV-2 disease in guinea pigs. J Infect Dis 2003, 187: 542-549. 10.1086/374002
Article
CAS
PubMed
Google Scholar
Morrison LA: Vaccines against genital herpes: progress and limitations. Drugs 2002, 62: 1119-1129. 10.2165/00003495-200262080-00001
Article
PubMed
Google Scholar
Buddingh GJ, Schrum DI, Lanier JC, Guidry DJ: Studies of the natural history of herpes simplex virus infections. Pediatrics 1953, 11: 593-605.
Google Scholar
Kinghorn GR: Epidemiology of genital herpes. J Int Med Res 1994, 22: 14A-23A..
PubMed
Google Scholar
Decman V, Freeman ML, Kinchington PR, Hendricks RL: Immune control of HSV-1 latency. Viral Immunol 2005, 18: 466-473. 10.1089/vim.2005.18.466
Article
CAS
PubMed
Google Scholar
Khanna KM, Lepisto AJ, Decman V, Hendricks RL: Immune control of herpes simplex virus during latency. Curr Opin Immunol 2004, 16: 463-469. 10.1016/j.coi.2004.05.003
Article
CAS
PubMed
Google Scholar
Samaniego LA, Neiderhiser L, DeLuca NA: Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 1998, 72: 3307-3320.
PubMed Central
CAS
PubMed
Google Scholar
Cai W, Schaffer PA: Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J Virol 1989, 63: 4579-4589.
PubMed Central
CAS
PubMed
Google Scholar
Cai W, Astor TL, Liptak LM, Cho C, Coen DM, Schaffer PA: The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency. J Virol 1993, 67: 7501-7512.
PubMed Central
CAS
PubMed
Google Scholar
DeLuca NA, McCarthy AM, Schaffer PA: Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 1985, 56: 558-570.
PubMed Central
CAS
PubMed
Google Scholar
Halford WP, Balliet JD, Gebhardt BM: Re-evaluating natural resistance to herpes simplex virus type 1. J Virol 2004, 78: 10086-10095. 10.1128/JVI.78.18.10086-10095.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Soboleski MR, Oaks J, Halford WP: Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J 2005, 19: 440-442.
PubMed Central
CAS
PubMed
Google Scholar
Sacks WR, Schaffer PA: Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J Virol 1987, 61: 829-839.
PubMed Central
CAS
PubMed
Google Scholar
Treco DA: Preparation and analysis of DNA, p.2.0.3-2.2.3. In Current protocols in molecular biology. Edited by: Ausubel FM. New York, N.Y. , John Wiley & Sons; 1990.
Google Scholar
Siebert PD, Larrick JW: PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR. Biotechniques 1993, 14: 244-249.
CAS
PubMed
Google Scholar
Hill JM, Halford WP, Wen R, Engel LS, Green LC, Gebhardt BM: Quantitative analysis of polymerase chain reaction products by dot blot. Anal Biochem 1996, 235: 44-48. 10.1006/abio.1996.0089
Article
CAS
PubMed
Google Scholar
Miller RD, Hogg J, Ozaki JH, Gell D, Jackson SP, Riblet R: Gene for the catalytic subunit of mouse DNA-dependent protein kinase maps to the scid locus. Proc Natl Acad Sci U S A 1995, 92: 10792-10795. 10.1073/pnas.92.23.10792
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, Grosveld F, Pandolfi PP: Role of PML in cell growth and the retinoic acid pathway. Science 1998, 279: 1547-1551. 10.1126/science.279.5356.1547
Article
CAS
PubMed
Google Scholar
Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, et al.: RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992, 68: 855-867. 10.1016/0092-8674(92)90029-C
Article
CAS
PubMed
Google Scholar
Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M: Immune response in mice that lack the interferon-gamma receptor. Science 1993, 259: 1742-1745.
Article
CAS
PubMed
Google Scholar
Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M: Functional role of type I and type II interferons in antiviral defense. Science 1994, 264: 1918-1921.
Article
CAS
PubMed
Google Scholar
van den Broek MF, Muller U, Huang S, Aguet M, Zinkernagel RM: Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. J Virol 1995, 69: 4792-4796.
PubMed Central
CAS
PubMed
Google Scholar
Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD: Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996, 84: 431-442. 10.1016/S0092-8674(00)81288-X
Article
CAS
PubMed
Google Scholar