Manners O, Murphy JC, Coleman A, Hughes DJ, Whitehouse A. Contribution of the KSHV and EBV lytic cycles to tumourigenesis. Curr Opin Virol. 2018;32:60–70.
CAS
PubMed
PubMed Central
Google Scholar
Dunmire SK, Hogquist KA, Balfour HH. Infectious Mononucleosis. In: Münz C, editor. Epstein Barr Virus Volume 1: One Herpes Virus: Many Diseases [Internet]. Cham: Springer International Publishing; 2015 [cited 2021 Jul 6]. p. 211–40. Available from: https://doi.org/10.1007/978-3-319-22822-8_9
Hatano Y, Ideta T, Hirata A, Hatano K, Tomita H, Okada H, et al. Virus-Driven Carcinogenesis. Cancers. Multidisciplinary Digital Publishing Institute; 2021;13:2625.
Houen G, Trier NH. Epstein-Barr virus and systemic autoimmune diseases. Front Immunol [Internet]. Frontiers; 2021 [cited 2021 Jul 6];11. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2020.587380/full
Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. Kaposi sarcoma. Nat Rev Dis Primers. 2019;5:1–21.
Google Scholar
Dong S, Forrest JC, Liang X. Murine Gammaherpesvirus 68: A Small Animal Model for Gammaherpesvirus-Associated Diseases. In: Cai Q, Yuan Z, Lan K, editors. Infectious agents associated cancers: epidemiology and molecular biology [Internet]. Singapore: Springer Singapore; 2017 [cited 2019 Jun 5]. p. 225–36. Available from: https://doi.org/10.1007/978-981-10-5765-6_14
Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol Nature Publishing Group. 2009;9:535–42.
CAS
Google Scholar
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180:1044–66.
CAS
PubMed
Google Scholar
Ruprecht CR, Lanzavecchia A. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol. 2006;36:810–6.
CAS
PubMed
Google Scholar
Jiang W, Lederman MM, Harding CV, Rodriguez B, Mohner RJ, Sieg SF. TLR9 stimulation drives naïve B cells to proliferate and to attain enhanced antigen presenting function. Eur J Immunol. 2007;37:2205–13.
CAS
PubMed
Google Scholar
Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of Serological Memory by polyclonal activation of human memory B cells. science. American Association for the Advancement of Science; 2002;298:2199–202.
Dorner M, Brandt S, Tinguely M, Zucol F, Bourquin J-P, Zauner L, et al. Plasma cell toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production. Immunology. 2009;128:573–9.
CAS
PubMed
PubMed Central
Google Scholar
Estornes Y, Toscano F, Virard F, Jacquemin G, Pierrot A, Vanbervliet B, et al. dsRNA induces apoptosis through an atypical death complex associating TLR3 to caspase-8. Cell Death Differ. 2012;19:1482–94.
CAS
PubMed
PubMed Central
Google Scholar
Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, et al. cIAPs block ripoptosome formation, a RIP1/Caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell. 2011;43:449–63.
CAS
PubMed
PubMed Central
Google Scholar
Michaud F, Coulombe F, Gaudreault É, Kriz J, Gosselin J. Involvement of TLR2 in recognition of acute gammaherpesvirus-68 infection. PLOS ONE. Public Library Sci; 2010;5:e13742.
Bussey KA, Murthy S, Reimer E, Chan B, Hatesuer B, Schughart K, et al. Endosomal toll-like receptors 7 and 9 cooperate in detection of murine gammaherpesvirus 68 infection. J Virol [Internet]. American Society for Microbiology Journals; 2019 [cited 2021 Feb 7];93. Available from: http://jvi.asm.org/content/93/3/e01173-18
Gargano LM, Moser JM, Speck SH. Role for MyD88 signaling in murine gammaherpesvirus 68 Latency. J Virol. Am Soc Microbiol J; 2008;82:3853–63.
Guggemoos S, Hangel D, Hamm S, Heit A, Bauer S, Adler H. TLR9 Contributes to antiviral immunity during gammaherpesvirus infection. J Immunol. Am Assoc Immunol; 2008;180:438–43.
Haas F, Yamauchi K, Murat M, Bernasconi M, Yamanaka N, Speck RF, et al. Activation of NF-κB via Endosomal Toll-Like Receptor 7 (TLR7) or TLR9 Suppresses murine herpesvirus 68 reactivation. J Virol. Am Soc Microbiol J; 2014;88:10002–12.
West JA, Gregory SM, Sivaraman V, Su L, Damania B. Activation of plasmacytoid dendritic cells by kaposi’s sarcoma-associated herpesvirus. J Virol Am Soc Microbiol J. 2011;85:895–904.
CAS
Google Scholar
Fiola S, Gosselin D, Takada K, Gosselin J. TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells. J Immunol Am Assoc Immunol. 2010;185:3620–31.
CAS
Google Scholar
Quan TE, Roman RM, Rudenga BJ, Holers VM, Craft JE. Epstein-Barr virus promotes interferon-α production by plasmacytoid dendritic cells. Arthritis Rheum. 2010;62:1693–701.
CAS
PubMed
PubMed Central
Google Scholar
Salloum N, Hussein HM, Jammaz R, Jiche S, Uthman IW, Abdelnoor AM, et al. Epstein-Barr virus DNA modulates regulatory T-cell programming in addition to enhancing interleukin-17A production via Toll-like receptor 9. PLOS ONE. Public Library of Science; 2018;13:e0200546.
Lagos D, Vart RJ, Gratrix F, Westrop SJ, Emuss V, Wong P-P, et al. Toll-like Receptor 4 Mediates Innate Immunity to Kaposi Sarcoma Herpesvirus. Cell Host Microbe. 2008;4:470–83.
CAS
PubMed
PubMed Central
Google Scholar
Ariza M-E, Glaser R, Kaumaya PTP, Jones C, Williams MV. The EBV-Encoded dUTPase Activates NF-κB through the TLR2 and MyD88-Dependent Signaling Pathway. J Immunol. Am Assoc Immunol; 2009;182:851–9.
Gaudreault E, Fiola S, Olivier M, Gosselin J. Epstein-Barr Virus induces MCP-1 secretion by human monocytes via TLR2. J Virol. 2007;81:8016–24.
CAS
PubMed
PubMed Central
Google Scholar
Ariza ME, Rivailler P, Glaser R, Chen M, Williams MV. Epstein-Barr Virus Encoded dUTPase Containing Exosomes Modulate Innate and Adaptive Immune Responses in Human Dendritic Cells and Peripheral Blood Mononuclear Cells. PLOS ONE. Public Library of Science; 2013;8:e69827.
Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, et al. Epstein-Barr virus (EBV)–encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. J Exp Med. 2009;206:2091–9.
CAS
PubMed
PubMed Central
Google Scholar
Lim WH, Kireta S, Russ GR, Coates PTH. Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice. Blood. 2006;109:1043–50.
PubMed
Google Scholar
Chiriaco M, Di Matteo G, Conti F, Petricone D, De Luca M, Di Cesare S, et al. First Case of Patient With Two Homozygous Mutations in MYD88 and CARD9 Genes Presenting With Pyogenic Bacterial Infections, Elevated IgE, and Persistent EBV Viremia. Front Immunol [Internet]. Frontiers; 2019 [cited 2021 Jun 14];10. Available from: http://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2019.00130/full
Ladell K, Dorner M, Zauner L, Berger C, Zucol F, Bernasconi M, et al. Immune activation suppresses initiation of lytic Epstein-Barr virus infection. Cell Microbiol. 2007;9:2055–69.
CAS
PubMed
Google Scholar
Jordi M, Marty J, Mordasini V, Lünemann A, McComb S, Bernasconi M, et al. IRAK4 is essential for TLR9-induced suppression of Epstein-Barr virus BZLF1 transcription in Akata Burkitt’s lymphoma cells. PLOS ONE. Public Library of Science; 2017;12:e0186614.
Zauner L, Melroe GT, Sigrist JA, Rechsteiner MP, Dorner M, Arnold M, et al. TLR9 triggering in Burkitt’s lymphoma cell lines suppresses the EBV BZLF1 transcription via histone modification. Oncogene Nature Publishing Group. 2010;29:4588–98.
CAS
Google Scholar
Doyle SE, Vaidya SA, O’Connell R, Dadgostar H, Dempsey PW, Wu T-T, et al. IRF3 Mediates a TLR3/TLR4-Specific Antiviral Gene Program. Immunity. 2002;17:251–63.
CAS
PubMed
Google Scholar
Gregory SM, West JA, Dillon PJ, Hilscher C, Dittmer DP, Damania B. Toll-like receptor signaling controls reactivation of KSHV from latency. PNAS Natl Acad Sci. 2009;106:11725–30.
CAS
Google Scholar
Noack J, Jordi M, Zauner L, Alessi D, Burch A, Tinguely M, et al. TLR9 agonists induced cell death in Burkitt’s lymphoma cells is variable and influenced by TLR9 polymorphism. Cell Death Dis Nature Publishing Group. 2012;3:e323–e323.
CAS
Google Scholar
Vérillaud B, Gressette M, Morel Y, Paturel C, Herman P, Lo KW, et al. Toll-like receptor 3 in Epstein-Barr virus-associated nasopharyngeal carcinomas: consistent expression and cytotoxic effects of its synthetic ligand poly(A:U) combined to a Smac-mimetic. Infect Agents Cancer BioMed Central. 2012;7:1–10.
Google Scholar
Friboulet L, Pioche-Durieu C, Rodriguez S, Valent A, Souquère S, Ripoche H, et al. Recurrent Overexpression of c-IAP2 in EBV-Associated Nasopharyngeal Carcinomas: Critical Role in Resistance to Toll-like Receptor 3-Mediated Apoptosis. Neoplasia. Elsevier; 2008;10:1183-IN7.
Martin HJ, Lee JM, Walls D, Hayward SD. Manipulation of the Toll-Like receptor 7 signaling pathway by epstein-barr virus. J Virol. 2007;81:9748–58.
CAS
PubMed
PubMed Central
Google Scholar
Ou C, Sun Z, Zhang H, Xiong W, Ma J, Zhou M, et al. SPLUNC1 reduces the inflammatory response of nasopharyngeal carcinoma cells infected with the EB virus by inhibiting the TLR9/NF-κB pathway. Oncol Rep Spandidos Publ. 2015;33:2779–88.
CAS
Google Scholar
West J, Damania B. Upregulation of the TLR3 Pathway by Kaposi’s sarcoma-associated herpesvirus during primary infection. J Virol. Am Soc Microbiol J; 2008;82:5440–9.
Bussey KA, Reimer E, Todt H, Denker B, Gallo A, Konrad A, et al. The gammaherpesviruses kaposi’s sarcoma-associated herpesvirus and murine gammaherpesvirus 68 modulate the toll-like receptor-induced proinflammatory cytokine response. J Virol. Am Soc Microbiol J; 2014;88:9245–59.
Pezda AC, Penn A, Barton GM, Coscoy L. Suppression of TLR9 immunostimulatory motifs in the genome of a gammaherpesvirus. J Immunol. 2011;187:887–96.
CAS
PubMed
Google Scholar
Fathallah I, Parroche P, Gruffat H, Zannetti C, Johansson H, Yue J, et al. EBV latent membrane protein 1 Is a negative regulator of TLR9. J Immunol. Am Assoc Immunol; 2010;185:6439–47.
van Gent M, Griffin BD, Berkhoff EG, van Leeuwen D, Boer IGJ, Buisson M, et al. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection. J Immunol. 2011;186:1694–702.
PubMed
Google Scholar
Farina A, Cirone M, York M, Lenna S, Padilla C, Mclaughlin S, et al. Epstein-barr virus infection induces aberrant TLR activation pathway and fibroblast-myofibroblast conversion in scleroderma. J Invest Dermatol. 2014;134:954–64.
CAS
PubMed
Google Scholar
Zhao Q, Liang D, Sun R, Jia B, Xia T, Xiao H, et al. Kaposi’s Sarcoma-associated herpesvirus-encoded replication and transcription activator impairs innate immunity via ubiquitin-mediated degradation of myeloid differentiation factor 88. J Virol. Am Soc Microbiol J; 2015;89:415–27.
Lingel A, Ehlers E, Wang Q, Cao M, Wood C, Lin R, et al. Kaposi’s Sarcoma-associated herpesvirus reduces cellular myeloid differentiation primary-response gene 88 (MyD88) expression via modulation of its RNA. J Virol. Am Soc Microbiol J; 2016;90:180–8.
Ahmad H, Gubbels R, Ehlers E, Meyer F, Waterbury T, Lin R, et al. Kaposi sarcoma-associated herpesvirus degrades cellular toll-interleukin-1 receptor domain-containing adaptor-inducing β-interferon (TRIF). J Biol Chem. 2011;286:7865–72.
CAS
PubMed
PubMed Central
Google Scholar
Jacobs SR, Gregory SM, West JA, Wollish AC, Bennett CL, Blackbourn DJ, et al. The viral interferon regulatory factors of kaposi’s sarcoma-associated herpesvirus differ in their inhibition of interferon activation mediated by toll-like receptor 3. J Virol. Am Soc Microbiol J; 2013;87:798–806.
Sharma NR, Majerciak V, Kruhlak MJ, Zheng Z-M. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation. PLOS Pathogens. Public Library of Science; 2017;13:e1006677.
Abend JR, Ramalingam D, Kieffer-Kwon P, Uldrick TS, Yarchoan R, Ziegelbauer JM. Kaposi’s Sarcoma-associated herpesvirus MicroRNAs target IRAK1 and MYD88, two components of the toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression. J Virol. Am Soc Microbiol J; 2012;86:11663–74.
Wong HL, Wang X, Chang RC-C, Jin D-Y, Feng H, Wang Q, et al. Stable expression of EBERs in immortalized nasopharyngeal epithelial cells confers resistance to apoptotic stress. Mol Carcinogenesis. 2005;44:92–101.
van Gent M, Braem SGE, Jong A de, Delagic N, Peeters JGC, Boer IGJ, et al. Epstein-barr virus large tegument protein bplf1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLOS Pathogens. Public Library of Science; 2014;10:e1003960.
van Gent M, Gram AM, Boer IGJ, Geerdink RJ, Lindenbergh MFS, Lebbink RJ, et al. Silencing the shutoff protein of Epstein-Barr virus in productively infected B cells points to (innate) targets for immune evasion. J Gen Virol. 2015;96:858–65.
PubMed
Google Scholar
Shen Y, Wang S, Sun F, Zheng G, Wu T, Du Y, et al. Inhibition of murine herpesvirus-68 replication by IFN-gamma in macrophages is counteracted by the induction of SOCS1 expression. PLOS Pathogens. Public Library of Science; 2018;14:e1007202.
Gilardini Montani MS, Santarelli R, Falcinelli L, Gonnella R, Granato M, Renzo LD, et al. EBV up-regulates PD-L1 on the surface of primary monocytes by increasing ROS and activating TLR signaling and STAT3. J Leukoc Biol. 2018;104:821–32.
CAS
PubMed
Google Scholar
Tarakanova VL, Suarez F, Tibbetts SA, Jacoby MA, Weck KE, Hess JL, et al. Murine gammaherpesvirus 68 infection is associated with lymphoproliferative disease and lymphoma in BALB beta2 microglobulin-deficient mice. J Virol. 2005;79:14668–79.
CAS
PubMed
PubMed Central
Google Scholar
Tarakanova VL, Kreisel F, White DW, Virgin HW. Murine gammaherpesvirus 68 genes both induce and suppress lymphoproliferative disease. J Virol. 2008;82:1034–9.
CAS
PubMed
Google Scholar
Morris TL, Arnold RR, Webster-Cyriaque J. Signaling cascades triggered by bacterial metabolic end products during reactivation of Kaposi’s sarcoma-associated herpesvirus. J Virol. 2007;81:6032–42.
CAS
PubMed
PubMed Central
Google Scholar
Moser JM, Upton JW, Gray KS, Speck SH. Ex vivo stimulation of B cells latently infected with gammaherpesvirus 68 triggers reactivation from latency. J Virol. 2005;79:5227–31.
CAS
PubMed
PubMed Central
Google Scholar
Dai L, Qiao J, Yin J, Goldstein A, Lin H-Y, Post SR, et al. Kaposi Sarcoma-Associated Herpesvirus and Staphylococcus aureus Coinfection in Oral Cavities of HIV-Positive Patients: A Unique Niche for Oncogenic Virus Lytic Reactivation. J Infect Dis. 2020;221:1331–41.
CAS
PubMed
Google Scholar
Gargano LM, Forrest JC, Speck SH. Signaling through Toll-Like Receptors Induces Murine Gammaherpesvirus 68 Reactivation In Vivo. J Virol. Am Soc Microbiol J; 2009;83:1474–82.
Takada K. Cross-linking of cell surface immunoglobulins induces epstein-barr virus in burkitt lymphoma lines. Int J Cancer. 1984;33:27–32.
CAS
PubMed
Google Scholar
Ptaschinski C, Wilmore J, Fiore N, Rochford R. In Vivo Activation of Toll-Like Receptor-9 Induces an Age-Dependent Abortive Lytic Cycle Reactivation of Murine Gammaherpesvirus-68. Viral Immunology. Mary Ann Liebert, Inc., publishers; 2010;23:547–55.
Meyer F, Ehlers E, Steadman A, Waterbury T, Cao M, Zhang L. TLR-TRIF pathway enhances the expression of KSHV replication and transcription activator. J Biol Chem. 2013;288:20435–42.
CAS
PubMed
PubMed Central
Google Scholar
Hirsiger JR, Fuchs PS, Häusermann P, Müller-Durovic B, Daikeler T, Recher M, et al. Syphilis reactivates latent epstein-barr virus reservoir via toll-like receptor 2 and B-Cell receptor activation. Open Forum Infectious Diseases. 2019. https://doi.org/10.1093/ofid/ofz317.
Article
PubMed
PubMed Central
Google Scholar
Siennicka J, Trzcińska A, Cześcik A, Dunal-Szczepaniak M, Lagosz B. The influence of toll-like receptor stimulation on expression of EBV lytic genes. Pol J Microbiol. 2013;62:237–42.
CAS
PubMed
Google Scholar
Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med. 2004;10:871–5.
CAS
PubMed
PubMed Central
Google Scholar
Iskra S, Kalla M, Delecluse H-J, Hammerschmidt W, Moosmann A. Toll-Like receptor agonists synergistically increase proliferation and activation of B cells by epstein-barr virus. J Virol. 2010;84:3612–23.
CAS
PubMed
PubMed Central
Google Scholar
Younesi V, Shirazi FG, Memarian A, Amanzadeh A, Jeddi-Tehrani M, Shokri F. Assessment of the effect of TLR7/8, TLR9 agonists and CD40 ligand on the transformation efficiency of Epstein-Barr virus in human B lymphocytes by limiting dilution assay. Cytotechnology. 2014;66:95–105.
CAS
PubMed
Google Scholar
Bourke E, Bosisio D, Golay J, Polentarutti N, Mantovani A. The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood. 2003;102:956–63.
PubMed
Google Scholar
Wang H, Nicholas MW, Conway KL, Sen P, Diz R, Tisch RM, et al. EBV Latent Membrane Protein 2A Induces Autoreactive B Cell Activation and TLR Hypersensitivity. The Journal of Immunology. American Association of Immunologists; 2006;177:2793–802.
Zhou L, Hang X, Xie L. Toll-like receptor 3 (TLR3) functions as a pivotal target in latent membrane protein 1 (LMP1)-mediated nasopharyngeal carcinoma cell proliferation. Int J Clin Exp Pathol. 2020;13:153–62.
PubMed
PubMed Central
Google Scholar
Li Z, Duan Y, Cheng S, Chen Y, Hu Y, Zhang L, et al. EBV-encoded RNA via TLR3 induces inflammation in nasopharyngeal carcinoma. Oncotarget Impact Journals. 2015;6:24291–303.
Google Scholar
Ruuskanen M, Leivo I, Minn H, Vahlberg T, Haglund C, Hagström J, et al. Expression of toll-like receptors in non-endemic nasopharyngeal carcinoma. BMC Cancer BioMed Central. 2019;19:1–12.
Google Scholar
Gruffaz M, Vasan K, Tan B, Silva SR da, Gao S-J. TLR4-Mediated Inflammation Promotes KSHV-Induced Cellular Transformation and Tumorigenesis by Activating the STAT3 Pathway. Cancer Res. American Association for Cancer Research; 2017;77:7094–108.
Yang D, Chen W, Xiong J, Sherrod CJ, Henry DH, Dittmer DP. Interleukin 1 receptor-associated kinase 1 (IRAK1) mutation is a common, essential driver for Kaposi sarcoma herpesvirus lymphoma. PNAS National Academy of Sciences. 2014;111:E4762–8.
CAS
Google Scholar
Seltzer J, Moorad R, Schifano JM, Landis JT, Dittmer DP. Interleukin-1 Receptor-Associated Kinase (IRAK) Signaling in Kaposi Sarcoma-Associated Herpesvirus-Induced Primary Effusion Lymphoma. Journal of Virology [Internet]. American Society for Microbiology Journals; 2020 [cited 2021 Mar 24];94. Available from: http://jvi.asm.org/content/94/10/e02123-19
Farina A, Peruzzi G, Lacconi V, Lenna S, Quarta S, Rosato E, et al. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes. Arthritis Res Ther BioMed Central. 2017;19:1–14.
CAS
Google Scholar
Cavalcante P, Galbardi B, Franzi S, Marcuzzo S, Barzago C, Bonanno S, et al. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology. 2016;221:516–27.
CAS
PubMed
Google Scholar
Valente RM, Ehlers E, Xu D, Ahmad H, Steadman A, Blasnitz L, et al. Toll-like receptor 7 stimulates the expression of epstein-barr virus latent membrane protein 1. PLOS ONE. Public Library of Science; 2012;7:e43317.
Mukherjee S, Huda S, Babu SPS. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scandinavian Journal of Immunology. 2019;90:e12771.
Zhang Y, Liu J, Wang C, Liu J, Lu W. Toll-Like Receptors Gene Polymorphisms in Autoimmune Disease. Front Immunol [Internet]. Frontiers; 2021 [cited 2021 Jul 1];12. Available from: http://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2021.672346/full
Jabłońska A, Studzińska M, Szenborn L, Wiśniewska-Ligier M, Karlikowska-Skwarnik M, Gęsicki T, et al. TLR4 896A/G and TLR9 1174G/A polymorphisms are associated with the risk of infectious mononucleosis. Sci Rep. Nature Publishing Group; 2020;10:13154.
Yosra M, Sameh S, Randa G, Yassmine R, Sallouha G, Nadia B, et al. Functional polymorphisms and gene expression of TLR9 gene as protective factors for nasopharyngeal carcinoma severity and progression. J Immunol Res. Hindawi; 2019;2019:e2826563.
Beima-Sofie K, Wamalwa D, Maleche-Obimbo E, Lingappa JR, Mackelprang R, Gantt S, et al. Toll-like receptor 9 polymorphism is associated with increased Epstein-Barr virus and Cytomegalovirus acquisition in HIV-exposed infants. AIDS. 2018;32:267–70.
CAS
PubMed
Google Scholar
Sharma U, Singhal P, Bandil K, Patle R, kumar A, Neyaz K, et al. Genetic variations of TLRs and their association with HPV/EBV, co-infection along with nicotine exposure in the development of premalignant/malignant lesions of the oral cavity in Indian population. Cancer Epidemiol. 2019;61:38–49.
Song C, Chen L-Z, Zhang R-H, Yu X-J, Zeng Y-X. Functional variant in the 3’-untranslated region of toll-like receptor 4 is associated with nasopharyngeal carcinoma risk. Cancer Biol Therapy. Taylor & Francis; 2006;5:1285–91.
Liu S, Wang X, Shi Y, Han L, Zhao Z, Zhao C, et al. Toll-like receptor gene polymorphisms and susceptibility to Epstein-Barr virus-associated and -negative gastric carcinoma in Northern China. Saudi Journal of Gastroenterology. 2015;21:95.
PubMed
PubMed Central
Google Scholar
Westrop SJ, Lagos D, Boshoff C, Bower M, Imami N. African ancestry and innate immunity contribute to the incidence of multicentric Castleman’s disease in HIV-1/Kaposi’s sarcoma herpesvirus-coinfected individuals. Future Virology. London, United Kingdom: Future Med Ltd; 2012;7:729–34.
Sallah N, Miley W, Labo N, Carstensen T, Fatumo S, Gurdasani D, et al. Distinct genetic architectures and environmental factors associate with host response to the γ 2-herpesvirus infections. Nat Commun. Nature Publishing Group; 2020;11:3849.