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REVIEW

Anti‑viral and pro‑inflammatory functions 
of Toll‑like receptors during gamma‑herpesvirus 
infections
Marta Maria Gaglia*   

Abstract 

Toll-like receptors (TLRs) control anti-viral responses both directly in infected cells and in responding cells of the 
immune systems. Therefore, they are crucial for responses against the oncogenic γ-herpesviruses Epstein-Barr virus 
and Kaposi’s sarcoma-associated herpesvirus and the related murine virus MHV68, which directly infect immune sys-
tem cells. However, since these viruses also cause lifelong persistent infections, TLRs may also be involved in modula-
tion of inflammation during latent infection and contribute to virus-driven tumorigenesis. This review summarizes 
work on both of these aspects of TLR/γ-herpesvirus interactions, as well as results showing that TLR activity can drive 
these viruses’ re-entry into the replicative lytic cycle.
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Introduction
The oncogenic human γ-herpesviruses Epstein-Barr 
virus (EBV) and Kaposi’s sarcoma-associated herpes-
virus (KSHV) need to overcome the immune system’s 
protective responses to establish lifelong latent infec-
tions in patients and to intermittently re-enter the lytic 
cycle. While the ability to cause a latent infection allows 
these viruses to persist, the lytic replicative cycle is key 
for spread within and between hosts. Moreover, both 
types of infection are important for the development of 
γ-herpesvirus-linked diseases [1]. EBV infection is largely 
ubiquitous, but if acquired past childhood EBV often 
gives rise to infectious mononucleosis [2]. In a subset of 
infected individuals, EBV infection leads to the develop-
ment of various types of B cell lymphomas, as well as spe-
cific subtypes of nasopharyngeal carcinoma (NPC) and 
gastric carcinoma [3]. In addition, EBV infection has also 
been linked to the development of autoimmune diseases 

[4]. KSHV infection is less prevalent, with a striking geo-
graphical bias, whereby seropositivity is much higher in 
Africa and some other regions of the world [5]. In some 
infected individuals, KSHV can give rise to Kaposi’s 
sarcoma and two B cell lymphoproliferative diseases, 
primary effusion lymphoma (PEL) and Multicentric 
Castleman disease (MCD), as well as KSHV-associated 
inflammatory cytokine syndrome (KICS) [3]. These dis-
eases are predominantly found in immunosuppressed 
patients, although an endemic form of Kaposi’s sarcoma 
not clearly related to immunosuppression is also com-
mon in parts of Africa [5].

Infected cells are endowed with multiple mechanisms 
to sense the infection and initiate a local and systemic 
response. In turn, viruses have evolved a plethora of 
approaches to counteract and limit these responses. In 
this review, we will focus on the interactions between 
γ-herpesviruses and Toll-like receptors (TLRs), a class 
of membrane-associated pathogen-associated molecu-
lar pattern (PAMP) receptors that detects PAMPs in the 
extracellular space and in endosomes. Interestingly, while 
many studies have studied the anti-viral functions of 
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TLRs in γ-herpesvirus infections and viral TLR evasion 
strategies, interactions with TLR signaling are also rel-
evant for other aspects of γ-herpesvirus biology (Fig. 1). 
Several studies suggest that TLR activation may be one of 
the triggers for lytic reactivation. Moreover, TLR modu-
lation of inflammatory responses has been linked to tum-
origenesis and autoimmunity, particularly during EBV 
infection. This review will summarize the current knowl-
edge on these aspects of TLR biology during infection 
with the human viruses EBV and KSHV. I will also cover 
studies on the related murine herpesvirus 68 (MHV68). 
As EBV and KSHV do not infect mice, MHV68 is widely 
used as a small animal model virus for these infections, 
and is used to dissect γ-herpesvirus biology in vivo [6].

Basics of TLR signaling
Mammalian TLRs are a family of transmembrane path-
ogen-recognition receptors (10 in humans and 12 in 
mice) discovered in the mid-1990s (Fig.  2). They have 
leucine-rich repeat containing ectodomains and cytosolic 
Toll-IL-1 receptor (TIR) domains. They are named for 
their homology to the Toll protein in Drosophila mela-
nogaster, which has roles in development. Different TLRs 
respond to different PAMPs (Fig.  2). However, they all 
trigger signaling pathways that culminate in the activa-
tion of the transcription factors NF-κB and/or interferon 
regulatory factor 3 and 7 (IRF3 and IRF7, Fig. 2). NF-κB 
induces transcription of pro-inflammatory cytokines like 

interleukin-6 (IL-6), while IRF3 and 7 induce transcrip-
tion of type I interferons (IFNs), which are potent anti-
viral cytokines. In addition to responding to different 
cues, different TLRs have different localization, either at 
the plasma membrane or internal membranes, predomi-
nantly endoplasmic reticulum, endosomes and endolys-
osomes. Many of the internal TLRs respond to nucleic 
acids, which are not exclusively pathogen molecules. 
Their localization is thought to naturally limit the auto-
activation of these TLRs by endogenous DNAs and RNAs 
[7]. Despite many differences in signaling, all TLRs use 
one of two adaptor proteins to transduce their signal-
ing – MyD88 or TRIF (Fig. 2). Both proteins contain TIR 
domains. Two additional adaptors, TRAM and TIRAP, 
are also involved in some of the signaling, although they 
are thought to act mostly as sorting adaptors, helping to 
recruit MyD88 and TRIF to the correct locale [7].

While intracellular PAMP-recognition receptors like 
RIG-I and cGAS are expressed in most if not all cell 
types, the expression of many TLRs is more restricted 
and they are found predominantly on cells of the immune 
system [8]. Because of this distribution, they have an 
important role in orchestrating organism-wide responses 
and modulating adaptive immunity [8]. In naïve B cells, 
which are the critical long term reservoir of EBV, KSHV 
and MHV68 infections, TLR activation promotes B 
cell activation [9], and may be sufficient for naïve B cell 
proliferation without B cell receptor ligation [10]. TLR 
stimulation, particularly CpG DNA activation of TLR9, 
also leads to proliferation in memory B cells [11] and 
increased antibody production in plasma cells [12].

Although activation of inflammatory cytokines and 
IFNs appears to be the main consequence of TLR acti-
vation, at least two TLRs, TLR3 and TLR4 have been 
reported to directly cause cell death [13, 14]. They do so 
by activation of caspase-8 through formation of a TRIF-
containing signaling complex [13, 14]. However, this 
process has largely been described in response to puri-
fied TLR ligands and it remains unclear if and when it is 
invoked during pathogen infection.

TLR signaling as anti‑viral mechanism and evasion 
during γ‑herpesvirus infection
Because of the central role of TLRs in anti-viral 
responses, many studies have investigated which and 
how TLRs contribute to innate immune responses to 
γ-herpesviruses (Table  1). They have uncovered roles 
both in the infected cells themselves and in other cells 
of the immune system that are key to the response to 
infection, like monocytes and dendritic cells. TLR2, 
7 and 9 (but not TLR3) are required for responses to 
MHV68 ex  vivo in dendritic cells and in  vivo [15–19]. 
However, TLR9 only has a role in protecting animals 

TLRs

γ-HV

diseaselytic
replication

anti-viral 
signaling

immune 
evasion

induction 
of lytic 

replication

inflammatory 
effects that 
modulate 
disease

Fig. 1  Summary of potential functions of TLR signaling in 
γ-herpesvirus infection. TLRs contribute to anti-viral responses 
against γ-herpesviruses, and their expression is induced in some 
situations, presumably as a result of anti-viral signaling (grey arrows). 
However, γ-herpesviruses also reduce expression and signaling of 
TLRs as an immune evasion strategy (light blue arrow). In addition, 
TLRs modulate γ-herpesvirus-caused diseases through their effect 
on inflammation (yellow arrows). Moreover, TLR activation can also 
reactivate the lytic cycle of γ-herpesviruses in latently infected cells 
(purple arrows)
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from MHV68 infection when MHV68 is administered 
from the intraperitoneal or intravenous route, not the 
intranasal route [16, 18, 19], possibly because TLR9 is 
not expressed in lung dendritic cells. Depending on the 
dose of the inoculum, loss of TLR9 in vivo can increase 
the number of latently infected cells in the spleen and/
or the frequency of reactivation of lytic infection in these 
cells [16, 18, 19], both parameters that are important for 
tumor development in human herpesviruses. Consist-
ent with the reports that TLRs sense and contribute to 
blocking MHV68 infection, MyD88 knockout mice were 
reported by Michaud et al. to have higher MHV68 infec-
tion rates [15]. However, a second study of MyD88 -/- 
mice reported instead that MyD88 loss impaired MHV68 
infection, perhaps due to a role for MyD88 in B cell acti-
vation [17]. Possibly, these differences are linked to the 
dose of the inoculum, as proposed by Michaud et  al. 
[15]. It is notable that inoculation doses used in the TLR 
studies summarized above vary by 2–3 orders of mag-
nitude. The dynamics of the host response and/or the 

effect on different cell types may be different depending 
on the strength of the stimulus. In general, these studies 
highlight the complexity of the system, as TLR signaling 
occurs in both myeloid cells and B cells and can have dif-
ferent biological roles depending on the cell type.

The data available for anti-viral effects in KSHV and 
EBV infection are more limited. TLR9 also induces type 
I IFN responses in dendritic cells after KSHV and EBV 
infection [20–22]. It also mediates IL-17 secretion after 
peritoneal injection of EBV DNA in mice or ex  vivo 
mouse monocyte treatment with EBV DNA [23]. TLR4 is 
activated during KSHV infection of lymphatic endothe-
lial cells, the cells that give rise to KS, likely by the enve-
lope glycoprotein [24]. This activation stimulates type I 
IFN production [24]. Moreover, loss of TLR4 increases 
the susceptibility of these and other cell types to KSHV 
infection [24]. TLR2 signaling is activated by the EBV 
dUTPase BLLF3, likely secreted in extracellular vesi-
cles (exosomes), and/or a virion component [21, 25–27], 
and TLR3 and 7 signaling are activated by Epstein–Barr 
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Fig. 2  Summary of human TLRs and their ligands. Diagram of the 10 human TLRs, indicating their adaptor molecules and the downstream result of 
their signaling. For each TLR, canonical ligands are listed in bold, artificial stimuli used to test their functions in parentheses, and described ligands 
from γ-herpesviruses (“γ-HV”) in italics. pDC = plasmacytoid dendritic cells; poly(I:C) = polyinosinic:polycytidylic acid; LPS = lipopolysaccharide. 
Sspoly(U) = single-stranded polyuridylic acid
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virus-encoded small RNAs (EBERs), likely also secreted 
by infected cells in exosomes [21, 22, 28]. Stimulation of 
these TLRs by EBV cues induces type I IFN and cytokine 
responses in monocytes and dendritic cells and promotes 

plasmacytoid dendritic cell maturation [21, 25–28]. The 
TLR mediated signaling in dendritic cells may be crucial 
to promote survival to infection through activation of NK 
and T cells, as shown by a study in a humanized mouse 

Table 1  Summary of studies on TLR activity during γ-herpesvirus infection

Only studies using infectious viruses (not single proteins) are included. TLR2 can be found in complex with either TLR1 or TLR6. Hence, studies on TLR2 are cited for 
both complexes, as the responsible complex is not usually clear

TLR Localization and 
stimulus

Activated + protective 
role during infection?

Artificial stimulation 
blocks viral replication?

Activity or expression 
inhibited by infection?

Artificial stimulation 
triggers reactivation?

1/2 Cell surface; Diacyl lipo-
peptides (Pam3CSK4)

Activated – EBV [21, 26] No – KSHV[35] Yes – EBV [44, 45] Yes – KSHV [62]

Yes – MHV68 in vivo [15] No – EBV [31] No – EBV [39] Yes – EBV [67, 68]

Minor effect – MHV68 in 
cells [34]

Yes – MHV68 in cells [42]

2/6 Cell surface; Triacyl 
lipopeptides(FSL-1)

Activated – EBV [21, 26] No – KSHV[35] Yes – EBV [44, 45] Yes – KSHV [62]

Yes – MHV68 in vivo [15] Minor effect – MHV68 in 
cells [34]

No – EBV [39] Yes – EBV [67, 68]

Yes – MHV68 in cells [42]

No – higher—MHV68 
in vivo [15]

3 Endosome; dsRNA (polyI:C) No – MHV68 in vivo [17] Yes – KSHV[35] Dynamic changes – KSHV 
[41, 50]

No – KSHV[35]

Activated but aids viral 
replication – MHV68 in 
cells [56]

Yes – MHV68 in cells [34] Yes – EBV [44] Maybe – EBV [68]

4 Cell surface and endo-
some; LPS, lipidA

Yes – KSHV [24] No – KSHV[35] Yes – KSHV [24] Yes – MHV68 ex vivo [63]

No – EBV [26] No – EBV [31] No – higher – KSHV [77] No – KSHV[35]

Yes – MHV68 [34] Yes – MHV68 in cells [43] Yes (bacterial products) – 
KSHV [60]

Maybe – EBV [68]

Yes – MHV68 in cells, ex vivo, 
in vivo [63]

5 Cell surface; flagellin Yes – KSHV[35] Yes – EBV [44, 76] No – KSHV[35]

Yes – MHV68 in cells, ex vivo 
[63]

7 Endosome; ssRNA 
(sspolyU, imiquimod, R848)

Minor effect – EBV [21] No – KSHV[35] No – higher – KSHV [41] Yes – KSHV[35]

Minor effect – MHV68 in 
cells and in vivo [16]

No – EBV [31] Yes — EBV [44, 45]

Yes – MHV68 in cells [19] No – higher – EBV [39]

Maybe (promotes latency) 
MHV68 in vivo [19]

Yes – MHV68 in cells [42]

8 Endosome; ssRNA 
(sspolyU, R848)

Activated – EBV [80] No – KSHV[35] No – higher – KSHV [41] Yes – KSHV[35]

No – EBV [31] No – higher – EBV [80]

Yes – MHV68 in cells [42]

9 Endosome;
dsDNA (CpG)

Activated – EBV [22, 45] No – KSHV[35] No – higher – KSHV [41] No – KSHV[35]

Yes – MHV68 in cells and 
in vivo [16, 18, 19]

Yes – EBV [31–33] Yes—EBV [39, 44, 45] Yes – MHV68 in cells, ex vivo, 
in vivo [63, 65]

No – MHV68 in cells [34] No – higher– EBV [21, 
31, 72]

Yes – MHV68 in cells [19] Yes – MHV68 in cells [42, 
43]

10 Cell surface; Pathogen 
proteins?

Yes—EBV [39, 45]

No – higher in transformed 
cells – EBV [72]
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model of EBV [29]. Also, consistent with an important 
role for TLR signaling in EBV responses, a patient with 
a MyD88 mutation was reported to have persistent EBV 
viremia, albeit asymptomatic [30]. Like other data on the 
role of TLRs, these data point to a role for TLR signaling 
in protective responses against KSHV and EBV, and also 
highlight the range of signals from these viruses that can 
elicit a TLR response.

In addition to TLR activation by γ-herpesviruses, 
the anti-viral role of TLRs against these viruses is dem-
onstrated by the fact that stimulation of TLRs reduces 
replication and reactivation of KSHV, EBV and MHV68 
(Table  1). In particular, several studies have shown that 
TLR9 activation reduces EBV and MHV68 reactivation 
from a latent infection in B cells and EBV infection and/
or replication in B cells and monocytes after a de novo 
infection [19, 21, 31–33]. The EBV studies did not test 
other TLR ligands, whereas Haas et  al. also found an 
effect of TLR7 (but not TLR3) ligands on MHV68 reac-
tivation in B cells [19, 31–33]. Seemingly in contrast with 
these results, Doyle et al. reported that TLR3 and TLR4 
activation reduces MHV68 replication after de novo 
infection in bone marrow macrophages, whereas TLR9 
activation in these cells has no effect [34]. However, the 
reported differences are most likely due to the expres-
sion levels of different TLRs and/or the downstream 
signaling that they elicit in the different cell types, as in 
macrophages TLR3/4 but not TLR9 stimulate type I IFN 
signaling [34]. In the case of KSHV, there may also be dif-
ferences in the activity and role of TLRs depending on 
cell type. TLR4 activation reduces replication in endothe-
lial cells infected de novo [24], while activation of TLR3 
or TLR5 reduces spontaneous reactivation in PEL cells 
[35]. In addition to cytokine-based anti-viral responses, 
stimulation of TLR3 and 9 may also elicit another time of 
protective response, cell death, in latently EBV-infected 
cells, including some Burkitt’s lymphoma cell lines and 
NPC cells [36, 37]. In turn, EBV may counteract this 
pathway by inducing high levels of cellular inhibitor of 
apoptosis 2 (cIAP2) in some NPC cells, which protects 
them from TLR3-induced apoptosis [38]. While all these 
studies show a protective effect of TLR signaling, some 
studies suggest that TLR activation can actually increase 
γ-herpesvirus reactivation, which will be more exten-
sively discussed in a later section.

If signaling from TLRs blocks γ-herpesvirus infection, 
it stands to reason that infection itself may modulate 
expression of these receptors. There are reports of both 
increase [15, 21, 39–41] and reduction of TLR expres-
sion and/or signaling [24, 39, 42–46] after infection with 
KSHV, EBV and MHV68 (Table  1). The direction of the 
detected changes depends on the virus, the cell type and 
the TLR studied. There are some discrepancies that are 

again likely to be linked to the normal function of the TLR 
and its ability to exert anti-viral activity in the specific cell 
type. Only a couple of the studies looked at more than 
one TLR in the same cells [39, 42, 45], so it is difficult to 
compare across studies. Moreover, multiple transformed 
B cells lines are used for KSHV and EBV studies, further 
complicating the picture. One consistent observation is 
the downregulation of TLR9 by EBV in B cells [39, 44, 
45] and the reduction of signaling from multiple TLRs 
during MHV68 infection of macrophages and conven-
tional dendritic cells [42, 43]. The effect of EBV on TLR9 
is also consistent with the fact that activation of this TLR 
reduces EBV replication [21, 31–33]. Reports of reduction 
in TLR expression and/or signaling by γ-herpesviruses 
are also generally consistent with the poor responses of 
many cells to these viruses [42, 43], and suggest that these 
viruses have evolved evasion mechanisms to deal with 
TLR activation. Indeed, several viral proteins have been 
implicated in inhibition of TLR signaling: for KSHV, the 
master lytic regulator ORF50/RTA [42, 47–49], the virus 
interferon regulatory factor-like (vIRF) proteins K9/
vIRF1 [50], K11/vIRF2 [50], K10.5/vIRF3 [42], the viral 
macrophage inflammatory protein III K4.2 [42], the viral 
thymidine kinase ORF21 [42], the regulators of viral gene 
expression ORF31 [42] and ORF57/MTA [51] and the 
KSHV microRNAs, particularly miR-K5 and miR-K9 [52]; 
for EBV, the non-coding EBER RNAs [53], the latent pro-
tein LMP1 [44], the deubiquitinase BPLF1 [54], and the 
host shutoff protein BGLF5 [45, 55]. These proteins and 
RNAs act through a variety of mechanisms. Some may 
alter the levels and localization of TLRs [21, 42, 45, 55] or 
of downstream signaling molecules like MyD88 and inter-
leukin 1 receptor-associated kinase 1 (IRAK1) [47–49, 
52]. Others may inhibit signal transduction downstream 
of TLR, for example through deubiquitination of signal-
ing proteins [54]. Of note, some of the genes in the list 
above have homologs across the γ-herpesviruses (the reg-
ulators of gene expression ORF50/RTA/BRLF1, ORF57/
MTA/BMLF1/SM, and ORF31/BDLF4, the viral thymi-
dine kinase ORF21/vTK/BXLF1, the host shutoff protein 
ORF37/SOX/BGLF5, and the deubiquitinase ORF64/
BPLF1). While these genes share other functions across 
the viruses, they were only identified in one of the viruses 
as TLR inhibitors. This could represent a different virus-
specific function, or may simply be a limitation of the cur-
rent studies. For example, to my knowledge no systematic 
screen of EBV or MHV68 proteins for TLR inhibition has 
yet been published, precluding a direct comparison with 
the KSHV results [42]. Lastly, in addition to these active 
mechanisms of TLR inhibition, Pezda et al. suggested that 
the paucity of CpG sequences in the MHV68 genome 
may also be responsible for reducing the TLR9 responsiv-
ity, as it reduces the viral DNA sequences that TLR9 can 
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recognize [43]. Nonetheless, this and other studies have 
also reported TLR9-dependent responses to MHV68, 
particularly in plasmacytoid dendritic cells [16, 18, 43], 
potentially because there is less viral replication in these 
cells and thus less expression of TLR inhibiting factors 
[43].

Interestingly, a recent study reports an even more com-
plicated interaction between MHV68 and TLR signal-
ing, whereby MHV68 takes advantage of TLR3 signaling 
to evade other immune responses. Shen et al. found that 
in MHV68-infected bone marrow-derived macrophages, 
TLR3 responses result in increased SOCS1 expression, 
which protects MHV68 from the anti-viral effects of 
IFN-γ treatment [56]. Along similar lines, TLR activation 
in EBV infected monocytes induces programmed death-
ligand 1 (PD-L1) expression [57]. As PD-L1 reduces sus-
ceptibility to killing by cytotoxic T cells, it may protect 
the EBV-infected monocytes [57].

While collectively the reviewed studies point to 
a role for TLRs in the host protective response to 
γ-herpesviruses, the exact effects reported differ among 
the viruses and in some cases in studies using the same 
viruses. Since the pattern of TLR expression changes 
depending on the cell type and in some cases the signals 
elicited by TLR activation are also different, many of the 
apparent discrepancies are likely due to differences in 
the experimental setup. Discrepancies in MHV68 mouse 
studies are more puzzling but may be at least in part due 
to the choice of route of infection and inoculum size. 
Despite the remaining questions, it is clear that multiple 
TLRs protect humans and mice against γ-herpesviruses, 
acting both in the infected cells and of the innate immune 
cells that respond to the infection. Further studies, par-
ticularly systematic comparisons of the same TLR in dif-
ferent cell types and different TLRs in the same cell type, 
are needed to fully dissect the contributions of TLRs in 
protective responses to γ-herpesviruses.

TLR signaling as a trigger for lytic reactivation 
of γ‑herpesviruses
In infected individuals or model organisms, EBV, KSHV 
and MHV68 undergo recurrent reactivation to the lytic 
cycle. This process has been linked to tumor development 
[1, 58, 59]. The cues that stimulate reactivation are only 
partially known, but they are generally thought to encom-
pass many signals that trigger the death of the infected 
cells. The viruses are thought to have evolved to detect 
conditions that will lead to the death of the latently infected 
cells, and to respond by re-entering the lytic cycle, so that 
newly formed virions can infect new cells and the virus 
can continue to propagate. Interestingly, several studies 
have suggested that TLR activation can constitute a signal 
that triggers lytic replication in KSHV, EBV and MHV68 

(Table  1). Indeed bacterial products were shown several 
years ago to induce lytic reactivation of KSHV in cell cul-
ture and MHV68 in an ex vivo setting, likely by stimulating 
TLRs [60, 61]. A recent study suggests that production of 
reactive oxygen species downstream of TLR2 may medi-
ate this effect in the oral cavity following Staphyloccocus 
aureus infections [62]. Gargano et  al. also showed that 
well-characterized ligands for TLR3, 4, 5 and 9 can induce 
MHV68 reactivation from latently infected B cells in cul-
ture, in explanted splenocytes, and even in vivo [63]. This 
effect did not extend to other TLRs despite similar down-
stream signaling. Lytic infection is stimulated after TLR 
stimulation because the treatment induces activation and 
proliferation of the B cells [63]. This effect is similar to 
that of B cell receptor ligation, which also induces MHV68 
and EBV reactivation [61, 64]. Interestingly, in mice TLR-
induced reactivation leads to an increase in the population 
of latently MHV68-infected cells [63]. The authors attrib-
uted this increase to increased viral production and seed-
ing of new infections, and speculated that this may be a way 
in which the latent reservoir is maintained in the presence 
of heterologous infections [63]. However, a later study sug-
gested that the MHV68 latent reservoir could be expanded 
after TLR9 stimulation also in the absence of active repli-
cation [65]. In KSHV-infected PEL cells, stimulation of 
the TLR7/8 with single-stranded polyU and other artifi-
cial ligands or vesicular stomatitis virus infection induces 
lytic reactivation [35]. Although multiple other TLRs are 
expressed in PEL cells, this study did not detect signifi-
cant increases in lytic reactivation after activation of other 
TLRs [35]. Nonetheless, another group found that TLR3 
activation directly increases RTA expression in a transfec-
tion setting [66], suggesting other TLRs may induce KSHV 
lytic reactivation in other conditions. In the case of EBV, 
virus reactivation and EBV-linked hepatitis were reported 
in a patient with infection with the syphilis pathogen 
Treponema pallidum, a known inducer of TLR2 [67]. In 
addition, stimulation of multiple TLRs can induce expres-
sion of the lytic regulator ZEBRA in EBV latently infected 
cell lines [68]. Collectively, these studies underscore the 
multiplicity of functions that TLR signaling can have dur-
ing γ-herpesvirus infection, including a role in promoting 
lytic replication. As TLR signaling can act as an activating 
stimulus for B cell, this positive effect on reactivation may 
be particularly pronounced in B cells, where reactivation is 
also coupled to other activating stimuli.

TLR signaling and inflammation in connection 
to cancer and other diseases caused by EBV 
and KSHV
Although much of the research on TLR and 
γ-herpesviruses has focused on their antiviral roles, 
another aspect of TLR signaling is the regulation of 
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inflammation. Inflammation has been connected to dis-
ease progression and cancer development in both EBV 
and KSHV infections. Moreover, TLRs regulate B cell 
responses, proliferation and antibody secretion [9–12], 
which means that TLR stimulation could promote viral 
persistence and expansion of infected cells. Indeed, 
TLR9 inducing cues have been used to improve immor-
talization of EBV infected B lymphocytes in cell culture 
[69]. Moreover, in experimental de novo EBV infections 
treatment with TLR ligands increased EBV-driven B 
cell activation and proliferation [70, 71]. Some reports 
also suggest that EBV-transformed B cells express more 
TLR9 and TLR10 [72], although other reports found the 
opposite [39]. The EBV oncogenes LMP1 and LMP2A 
can also increase expression and responses of subset of 
TLRs, which provides a survival advantage to B cells and 
NPC cells, although these studies were done using over-
expression and not EBV infection [73, 74]. In the context 
of NPC, the EBERs may induce TLR3 expression and 
cytokine-driven responses to promote tumorigenesis, as 
TLR3 knockdown reduces formation of NPC tumors in 
nude mice [75]. However, the relationship between TLR 
signaling and tumorigenesis may be more complex than 
these studies suggest. For example, a study of Finnish 
patients with NPC found that the low levels of TLR7 and 
9 were correlated with worse disease outcomes, while 
lower levels of TLR5 were correlated with better out-
comes [76].

Data on TLR and tumorigenesis in KSHV is limited. In 
a model of KSHV transformation using rodent mesen-
chymal stem cells, TLR4 activity was linked to increased 
proliferation, cytokine secretion and tumorigenesis in 
mouse xenografts [77]. Moreover, these KSHV-immor-
talized cells had increased TLR4 and MyD88 levels, 
suggesting the virus actively promotes their induction 
in the process of tumorigenesis [77]. Another potential 
connection between TLR signaling and KSHV tumors 
was identified in PEL cells, where Yang et  al. reported 
that interleukin 1 receptor-associated kinase 1 (IRAK1), 
which acts downstream of TLRs, promotes PEL cell 
survival and is commonly mutated in PEL samples [78]. 
Moreover, MyD88/IRAK signaling is constitutively active 
in PEL cells [79].

EBV infection may also contribute to the development 
of autoimmune diseases [4]. The effect of EBV infec-
tion in autoimmunity has been linked to increased IFN 
responses downstream of TLR activation in some stud-
ies of scleroderma [46, 80], myasthenia gravis [81] and 
lupus [82]. In particular, TLR7 activation in EBV-trans-
formed B cells may potentiate both LMP1 expression and 
responses to agonists of other TLRs, amplifying inflam-
mation and potentially contributing to pathology in lupus 
patients [82].

Many of the studies on cancer and autoimmune disease 
modulation by TLR in the context of γ-herpesviruses 
show that these effects are mediated by increased TLR 
levels or signaling. This may seem paradoxical, since 
increased TLR activation would be expected to help clear 
infections. A potential explanation for these observations 
is that while activation of TLR early in γ-herpesvirus 
infection of a new host or during lytic reactivation has 
an antiviral function (see earlier section), activation of 
this pathway once latency has been established may pro-
mote disease progression. This could occur as a result 
of inflammatory cytokine expression, or because reac-
tivation is blocked, favoring persistence of the latently 
infected cells.

Genetic associations between TLR polymorphisms, 
γ‑herpesvirus infection and γ‑herpesvirus‑linked 
diseases
Several studies have identified polymorphisms in TLRs 
that modify susceptibility to immune and infectious dis-
eases [83, 84]. In the context of γ-herpesviruses, there 
have been positive and negative findings on the connec-
tion between TLR polymorphisms and susceptibility to 
EBV infection and disease. In general, single-nucleotide 
polymorphisms that reduce TLR activity or expression 
were found to increase infection and/or disease risk in 
these studies. Polymorphisms in the TLR9 coding region 
or promoter have been linked to metrics of EBV infec-
tion and disease in various patient groups. These include 
risk of EBV infection, levels of EBV in the blood, develop-
ment of infectious mononucleosis, development of oral 
cancers, NPC tumor size and survival of NPC patients 
[85–88]. Polymorphisms in the TLR4 coding region and 
3’ UTR have also been reported to modify risk of infec-
tious mononucleosis, NPC and oral cancers [85, 88, 
89]. In addition, in one study polymorphisms in TLR2 
affected the levels of EBV DNA in the blood of infectious 
mononucleosis patients and the development of specific 
symptoms [85]. In contrast, a study of Northern Chinese 
gastric carcinoma patients found no connection between 
known polymorphisms in TLR2, 3 and 9 and susceptibil-
ity to EBV-associated gastric carcinoma [90].

Less in known about the connection of TLR polymor-
phisms and KSHV infection and diseases. Two studies 
investigated the TLR4 Asp299Gly polymorphism and 
found it is more common in HIV-positive patients with 
MCD than ones with KS or cancers unrelated to KSHV 
[24], and it is also more frequent in patients of Afri-
can descent [91]. MCD development may be linked to 
poorer control of KSHV replication, as these patients 
also had higher viremia [24, 91]. This is consistent with 
the fact that the Asp299Gly sequence change results in 
lower level of TLR4 at the plasma membrane and lower 
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LPS-triggered IFN induction [24, 91]. However, a recent 
genome-wide association study for both EBV and KSHV 
infection in an African cohort did not identify any TLR 
genes among their hits [92].

Conclusions
EBV, KSHV and MHV68 all interact with TLRs dur-
ing the course of infection, particularly as they infect 
cells of the immune system that express multiple TLRs. 
Multiple components of these viruses appear to be rec-
ognized by different TLRs, including both proteins and 
nucleic acids (Fig. 2). As illustrated in this review, there 
is extensive evidence that TLRs can act in anti-viral fash-
ion against γ-herpesviruses. However, TLR activation 
can also control the latent-lytic switch in B cells, act-
ing to promote viral replication. Moreover, TLR activity 
may be connected to tumorigenesis and development 
of autoimmune diseases in response to γ-herpesvirus 
infection, because of the key role of TLRs in modulat-
ing inflammatory responses. These findings suggest that 
modulation of TLR signaling could be used as a poten-
tial therapeutic intervention for EBV or KSHV, perhaps 
combined with other treatments. However, leveraging 
the role of TLR will require a much more precise and 
comprehensive understanding of the role of specific key 
TLRs in the dynamics of infection and disease. Currently, 
there are inconsistencies in the literature that need to 
be resolved within the study of each of the three viruses 
reviewed here. Many of these inconsistencies may stem 
from complex biology of TLRs and the multiple functions 
these receptors have in different cell types. However, this 
remains to be thoroughly tested by comparing the effects 
of different TLRs in different cell types in a systematic 
fashion. In addition, there are contradicting results in 
the in  vivo infection results with MHV68. The in  vivo 
MHV68 infection system is currently the best small ani-
mal model for γ-herpesviruses, and the only one available 
to examine the effect of TLRs at different stages of infec-
tion in a whole organism. A more systematic compari-
son of TLR activation and function at different inoculum 
doses would begin to address potential confounds in this 
system. Additional studies like these may point to the 
potential usefulness of TLR agonists and antagonists for 
anti-viral and/or anti-tumor therapies.
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