Matthews RE. The classification and nomenclature of viruses. Summary of results of meetings of the International Committee on Taxonomy of Viruses in The Hague, September 1978. Intervirology. 1979. https://doi.org/10.1159/000149025.
Article
PubMed
Google Scholar
Carocci M, Bakkali-Kassimi L. The encephalomyocarditis virus. Virulence. 2012. https://doi.org/10.4161/viru.20573.
Article
PubMed
PubMed Central
Google Scholar
Helwig FC, Schmidt CH. A filter-passing agent producing interstitial myocarditis in anthropoid apes and small animals. Science. 1945. https://doi.org/10.1126/science.102.2637.31.
Article
PubMed
Google Scholar
Canelli E, Luppi A, Lavazza A, Lelli D, Sozzi E, Martin AM, Gelmetti D, Pascotto E, Sandri C, Magnone W, Cordioli P. Encephalomyocarditis virus infection in an Italian zoo. Virol J. 2010. https://doi.org/10.1186/1743-422X-7-64.
Article
PubMed
PubMed Central
Google Scholar
Maurice H, Nielen M, Brocchi E, Nowotny N, Kassimi LB, Billinis C, Loukaides P, O’Hara RS, Koenen F. The occurrence of encephalomyocarditis virus (EMCV) in European pigs from 1990 to 2001. Epidemiol Infect. 2005. https://doi.org/10.1017/s0950268804003668.
Article
PubMed
PubMed Central
Google Scholar
Reddacliff LA, Kirkland PD, Hartley WJ, Reece RL. Encephalomyocarditis virus infections in an Australian zoo. J Zoo Wildl Med. 1997;28:153–7.
CAS
PubMed
Google Scholar
Billinis C. Encephalomyocarditis virus infection in wildlife species in Greece. J Wildl Dis. 2009. https://doi.org/10.7589/0090-3558-45.2.522.
Article
PubMed
Google Scholar
Bazzone LE, King M, MacKay CR, Kyawe PP, Meraner P, Lindstrom D, Rojas-Quintero J, Owen CA, Wang JP, Brass AL, et al. A disintegrin and metalloproteinase 9 domain (ADAM9) is a major susceptibility factor in the early stages of encephalomyocarditis virus infection. MBio. 2019. https://doi.org/10.1128/mBio.02734-18.
Article
PubMed
PubMed Central
Google Scholar
Zhu Q, Tan P, Li Y, Lin M, Li C, Mao J, Cui J, Zhao W, Wang HY, Wang RF. DHX29 functions as an RNA co-sensor for MDA5-mediated EMCV-specific antiviral immunity. PLoS Pathog. 2018. https://doi.org/10.1371/journal.ppat.1006886.
Article
PubMed
PubMed Central
Google Scholar
Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL, Pelkmans L, Rottier PJ, Bosch BJ, de Haan CA. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1004502.
Article
PubMed
PubMed Central
Google Scholar
Marsh M, Helenius A. Virus entry: open sesame. Cell. 2006. https://doi.org/10.1016/j.cell.2006.02.007.
Article
PubMed
PubMed Central
Google Scholar
Heikkila O, Susi P, Tevaluoto T, Harma H, Marjomaki V, Hyypia T, Kiljunen S. Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin. J Virol. 2010. https://doi.org/10.1128/JVI.01340-09.
Article
PubMed
PubMed Central
Google Scholar
Pietiainen V, Marjomaki V, Upla P, Pelkmans L, Helenius A, Hyypia T. Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol Biol Cell. 2004. https://doi.org/10.1091/mbc.e04-01-0070.
Article
PubMed
PubMed Central
Google Scholar
Bergelson JM. New (fluorescent) light on poliovirus entry. Trends Microbiol. 2008. https://doi.org/10.1016/j.tim.2007.12.004.
Article
PubMed
PubMed Central
Google Scholar
Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM. Imaging poliovirus entry in live cells. PLoS Biol. 2007. https://doi.org/10.1371/journal.pbio.0050183.
Article
PubMed
PubMed Central
Google Scholar
Coyne CB, Kim KS, Bergelson JM. Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO J. 2007. https://doi.org/10.1038/sj.emboj.7601831.
Article
PubMed
PubMed Central
Google Scholar
Chung SK, Kim JY, Kim IB, Park SI, Paek KH, Nam JH. Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology. 2005. https://doi.org/10.1016/j.virol.2004.12.010.
Article
PubMed
PubMed Central
Google Scholar
Berryman S, Clark S, Monaghan P, Jackson T. Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J Virol. 2005. https://doi.org/10.1128/JVI.79.13.8519-8534.2005.
Article
PubMed
PubMed Central
Google Scholar
Dicara D, Burman A, Clark S, Berryman S, Howard MJ, Hart IR, Marshall JF, Jackson T. Foot-and-mouth disease virus forms a highly stable, EDTA-resistant complex with its principal receptor, integrin alphavbeta6: implications for infectiousness. J Virol. 2008. https://doi.org/10.1128/JVI.01480-07.
Article
PubMed
Google Scholar
Johns HL, Berryman S, Monaghan P, Belsham GJ, Jackson T. A dominant-negative mutant of rab5 inhibits infection of cells by foot-and-mouth disease virus: implications for virus entry. J Virol. 2009. https://doi.org/10.1128/JVI.02460-08.
Article
PubMed
PubMed Central
Google Scholar
Quinting B, Robert B, Letellier C, Boxus M, Kerkhofs P, Schynts F, Collard A. Development of a 1-step enzyme-linked immunosorbent assay for the rapid diagnosis of bovine respiratory syncytial virus in postmortem specimens. J Vet Diagn Invest. 2007. https://doi.org/10.1177/104063870701900302.
Article
PubMed
Google Scholar
Huang J, Li J, Cheng C, Tang X, Shen X, Hao B. An amino acid duplication/insertion in the Bm126 gene of Bombyx mori nucleopolyhedrovirus alters viral gene expression as shown by differential gene expression analysis. Arch Virol. 2019. https://doi.org/10.1007/s00705-018-04144-2.
Article
PubMed
PubMed Central
Google Scholar
Du E, Tikoo SK. Efficient replication and generation of recombinant bovine adenovirus-3 in nonbovine cotton rat lung cells expressing I-SceI endonuclease. J Gene Med. 2010. https://doi.org/10.1002/jgm.1505.
Article
PubMed
Google Scholar
Dorobantu CM, Albulescu L, Harak C, Feng Q, van Kampen M, Strating JR, Gorbalenya AE, Lohmann V, van der Schaar HM, van Kuppeveld FJ. Modulation of the host lipid landscape to promote RNA virus replication: the picornavirus encephalomyocarditis virus converges on the pathway used by hepatitis C virus. PLoS Pathog. 2015. https://doi.org/10.1371/journal.ppat.1005185.
Article
PubMed
PubMed Central
Google Scholar
Szczepanski A, Owczarek K, Milewska A, Baster Z, Rajfur Z, Mitchell JA, Pyrc K. Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells. Vet Res. 2018. https://doi.org/10.1186/s13567-018-0551-9.
Article
PubMed
PubMed Central
Google Scholar
Zhang YN, Liu YY, Xiao FC, Liu CC, Liang XD, Chen J, Zhou J, Baloch AS, Kan L, Zhou B, Qiu HJ. Rab5, Rab7, and Rab11 are required for caveola-dependent endocytosis of classical swine fever virus in porcine alveolar macrophages. J Virol. 2018. https://doi.org/10.1128/JVI.00797-18.
Article
PubMed
PubMed Central
Google Scholar
Qian Z, Dominguez SR, Holmes KV. Role of the spike glycoprotein of human middle east respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0076469.
Article
PubMed
PubMed Central
Google Scholar
Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988. https://doi.org/10.1073/pnas.85.21.7972.
Article
PubMed
PubMed Central
Google Scholar
Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic. 2002. https://doi.org/10.1034/j.1600-0854.2002.30501.x.
Article
PubMed
Google Scholar
Pelkmans L, Helenius A. Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol. 2003. https://doi.org/10.1016/s0955-0674(03)00081-4.
Article
PubMed
Google Scholar
Phonphok Y, Rosenthal KS. Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines. FEBS Lett. 1991. https://doi.org/10.1016/0014-5793(91)80390-o.
Article
PubMed
Google Scholar
Wang LH, Rothberg KG, Anderson RG. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol. 1993. https://doi.org/10.1083/jcb.123.5.1107.
Article
PubMed
Google Scholar
Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011. https://doi.org/10.1038/icb.2011.20.
Article
PubMed
Google Scholar
Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009. https://doi.org/10.1146/annurev.biochem.78.081307.110540.
Article
PubMed
Google Scholar
Hill TA, Mariana A, Gordon CP, Odell LR, Robertson MJ, McGeachie AB, Chau N, Daniel JA, Gorgani NN, Robinson PJ, McCluskey A. Iminochromene inhibitors of dynamins I and II GTPase activity and endocytosis. J Med Chem. 2010. https://doi.org/10.1021/jm100119c.
Article
PubMed
Google Scholar
Preta G, Cronin JG, Sheldon IM. Dynasore-not just a dynamin inhibitor. Cell Commun Signal. 2015. https://doi.org/10.1186/s12964-015-0102-1.
Article
PubMed
PubMed Central
Google Scholar
Quan A, McGeachie AB, Keating DJ, van Dam EM, Rusak J, Chau N, Malladi CS, Chen C, McCluskey A, Cousin MA, Robinson PJ. Myristyl trimethyl ammonium bromide and octadecyl trimethyl ammonium bromide are surface-active small molecule dynamin inhibitors that block endocytosis mediated by dynamin I or dynamin II. Mol Pharmacol. 2007. https://doi.org/10.1124/mol.107.034207.
Article
PubMed
Google Scholar
Dietzel E, Kolesnikova L, Maisner A. Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms. Virol J. 2013. https://doi.org/10.1186/1743-422X-10-249.
Article
PubMed
PubMed Central
Google Scholar
Samson F, Donoso JA, Heller-Bettinger I, Watson D, Himes RH. Nocodazole action on tubulin assembly, axonal ultrastructure and fast axoplasmic transport. J Pharmacol Exp Ther. 1979;208:411–7.
CAS
PubMed
Google Scholar
Hernaez B, Alonso C. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J Virol. 2010. https://doi.org/10.1128/JVI.01557-09.
Article
PubMed
PubMed Central
Google Scholar
Daecke J, Fackler OT, Dittmar MT, Krausslich HG. Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J Virol. 2005. https://doi.org/10.1128/JVI.79.3.1581-1594.2005.
Article
PubMed
PubMed Central
Google Scholar
Wang K, Huang S, Kapoor-Munshi A, Nemerow G. Adenovirus internalization and infection require dynamin. J Virol. 1998;72:3455–8.
Article
CAS
Google Scholar
O’Donnell V, LaRocco M, Duque H, Baxt B. Analysis of foot-and-mouth disease virus internalization events in cultured cells. J Virol. 2005. https://doi.org/10.1128/JVI.79.13.8506-8518.2005.
Article
PubMed
PubMed Central
Google Scholar
Maginnis MS, Mainou BA, Derdowski A, Johnson EM, Zent R, Dermody TS. NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. J Virol. 2008. https://doi.org/10.1128/JVI.01612-07.
Article
PubMed
PubMed Central
Google Scholar
Patel A, Mohl BP, Roy P. Entry of bluetongue virus capsid requires the late endosome-specific lipid lysobisphosphatidic acid. J Biol Chem. 2016. https://doi.org/10.1074/jbc.M115.700856.
Article
PubMed
PubMed Central
Google Scholar
Forzan M, Marsh M, Roy P. Bluetongue virus entry into cells. J Virol. 2007. https://doi.org/10.1128/JVI.02284-06.
Article
PubMed
PubMed Central
Google Scholar
de Carvalho TM, Barrias ES, de Souza W. Macropinocytosis: a pathway to protozoan infection. Front Physiol. 2015. https://doi.org/10.3389/fphys.2015.00106.
Article
PubMed
PubMed Central
Google Scholar
Andrés G. African swine fever virus gets undressed: new insights on the entry pathway. J Virol. 2017. https://doi.org/10.1128/JVI.01906-16.
Article
PubMed
PubMed Central
Google Scholar
Aleksandrowicz P, Marzi A, Biedenkopf N, Beimforde N, Becker S, Hoenen T, Feldmann H, Schnittler HJ. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J Infect Dis. 2011. https://doi.org/10.1093/infdis/jir326.
Article
PubMed
PubMed Central
Google Scholar
Lee JH, Pasquarella JR, Kalejta RF. Cell line models for human cytomegalovirus latency faithfully mimic viral entry by macropinocytosis and endocytosis. J Virol. 2019. https://doi.org/10.1128/JVI.01021-19.
Article
PubMed
PubMed Central
Google Scholar
Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem. 2010. https://doi.org/10.1146/annurev-biochem-060208-104626.
Article
PubMed
Google Scholar
Triantafilou K, Triantafilou M. Lipid raft microdomains: key sites for Coxsackievirus A9 infectious cycle. Virology. 2003. https://doi.org/10.1016/j.virol.2003.08.036.
Article
PubMed
Google Scholar
Lamaze C, Tardif N, Dewulf M, Vassilopoulos S, Blouin CM. The caveolae dress code: structure and signaling. Curr Opin Cell Biol. 2017. https://doi.org/10.1016/j.ceb.2017.02.014.
Article
PubMed
Google Scholar
Henkhaus RS, Roy UK, Cavallo-Medved D, Sloane BF, Gerner EW, Ignatenko NA. Caveolin-1-mediated expression and secretion of kallikrein 6 in colon cancer cells. Neoplasia. 2008. https://doi.org/10.1593/neo.07817.
Article
PubMed
PubMed Central
Google Scholar
Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007. https://doi.org/10.1038/nrm2122.
Article
PubMed
Google Scholar
Uemura T, Tsaprailis G, Gerner EW. GSTPi stimulates caveolin-1-regulated polyamine uptake via actin remodeling. Oncotarget. 2019. https://doi.org/10.18632/oncotarget.27192.
Article
PubMed
PubMed Central
Google Scholar
Mergia A. The role of Caveolin 1 in HIV infection and pathogenesis. Viruses. 2017. https://doi.org/10.3390/v9060129.
Article
PubMed
PubMed Central
Google Scholar
Zhang F, Guo H, Zhang J, Chen Q, Fang Q. Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus. Virology. 2018. https://doi.org/10.1016/j.virol.2017.09.019.
Article
PubMed
PubMed Central
Google Scholar
Owczarek K, Szczepanski A, Milewska A, Baster Z, Rajfur Z, Sarna M, Pyrc K. Early events during human coronavirus OC43 entry to the cell. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-25640-0.
Article
PubMed
PubMed Central
Google Scholar
Kim JY, Wang L, Lee J, Ou JJ. Hepatitis C virus induces the localization of lipid rafts to autophagosomes for its RNA replication. J Virol. 2017. https://doi.org/10.1128/JVI.00541-17.
Article
PubMed
PubMed Central
Google Scholar
Ludwig A, Nguyen TH, Leong D, Ravi LI, Tan BH, Sandin S, Sugrue RJ. Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly. J Cell Sci. 2017. https://doi.org/10.1242/jcs.198853.
Article
PubMed
PubMed Central
Google Scholar
Ning P, Gao L, Zhou Y, Hu C, Lin Z, Gong C, Guo K, Zhang X. Caveolin-1-mediated endocytic pathway is involved in classical swine fever virus Shimen infection of porcine alveolar macrophages. Vet Microbiol. 2016. https://doi.org/10.1016/j.vetmic.2016.09.016.
Article
PubMed
Google Scholar
Mazzon M, Marsh M. Targeting viral entry as a strategy for broad-spectrum antivirals. F1000Res. 2019. https://doi.org/10.12688/f1000research.19694.1.
Article
PubMed
PubMed Central
Google Scholar
Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003. https://doi.org/10.1038/nature01451.
Article
PubMed
Google Scholar
Wang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, An J. Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl Trop Dis. 2010. https://doi.org/10.1371/journal.pntd.0000809.
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Wu N, Gao N, Yan W, Sheng Z, Fan D, An J. Small G Rac1 is involved in replication cycle of dengue serotype 2 virus in EAhy926 cells via the regulation of actin cytoskeleton. Sci China Life Sci. 2016. https://doi.org/10.1007/s11427-016-5042-5.
Article
PubMed
PubMed Central
Google Scholar