Carstens EB. Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses (2009). Arch Virol. 2010;155:133–46.
Article
CAS
PubMed
Google Scholar
Jelkmann W. Nucleotide sequences of apple stem pitting virus and of the coat protein gene of a similar virus from pear associated with vein yellows disease and their relationship with potex- and carlaviruses. J Gen Virol. 1994;75:1535–42.
Article
CAS
PubMed
Google Scholar
Mathioudakis MM, Maliogka VI, Dovas CI, Vasilakakis M, Katis NI. First record of the apple stem pitting virus (ASPV) in quince in Greece. J Plant Pathol. 2006;88:225.
Google Scholar
Mathioudakis MM, Maliogka VI, Katsiani AT, Katis NI. Incidence and molecular variability of apple stem pitting and apple chlorotic leaf spot viruses in apple and pear orchards in Greece. J Plant Pathol. 2010;92:139–47.
CAS
Google Scholar
Wu Z, Ku H, Su C, Chen I, Jan F. Molecular and biological characterization of an isolate of apple stem pitting virus causing pear vein yellows disease in Taiwan. J Plant Pathol. 2010;92:721–8.
CAS
Google Scholar
Moya A, Holmes EC, González-Candelas F. The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol. 2004;2:279.
Article
CAS
PubMed
Google Scholar
Boulila M. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis. Biochem Genet. 2010;48:357–75.
Article
CAS
PubMed
Google Scholar
Bandín I, Dopazo CP. Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates. Vet Res. 2011;42:67.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Sun R, Guo Q, Zhang S, Meulia T, Halfmann R, Li D, Qu F. A self-perpetuating repressive state of a viral replication protein blocks superinfection by the same virus. PLoS Pathog. 2017;13:e1006253.
Article
PubMed
PubMed Central
CAS
Google Scholar
Komorowska B, Siedlecki P, Kaczanowski S, Hasiów-Jaroszewska B, Malinowski T. Sequence diversity and potential recombination events in the coat protein gene of apple stem pitting virus. Virus Res. 2011;158:263–7.
Article
CAS
PubMed
Google Scholar
Liu N, Niu J, Zhao Y. Complete genomic sequence analyses of apple stem pitting virus isolates from China. Virus Genes. 2012;44:124–30.
Article
CAS
PubMed
Google Scholar
Yoon JY, Joa JH, San Choi K, Do KS, Lim HC, Chung BN. Genetic diversity of a natural population of apple stem pitting virus isolated from apple in Korea. Plant Pathol J. 2014;30:195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma X, Hong N, Moffett P, Wang G. Genetic diversity and evolution of apple stem pitting virus isolates from pear in China. Can J Plant Pathol. 2016;38:218–30.
Article
Google Scholar
Ivanov KI, Mäkinen K. Coat proteins, host factors and plant viral replication. Curr Opin Virol. 2012;2:712–8.
Article
CAS
PubMed
Google Scholar
Voinnet O, Pinto YM, Baulcombe DC. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci. 1999;96:14147–52.
Article
CAS
PubMed
Google Scholar
Senshu H, Ozeki J, Komatsu K, Hashimoto M, Hatada K, Aoyama M, Kagiwada S, Yamaji Y, Namba S. Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. J Gen Virol. 2009;90:1014–24.
Article
CAS
PubMed
Google Scholar
Morozov SY, Solovyev AG. Phylogenetic relationship of some “accessory” helicases of plant positive-stranded RNA viruses: toward understanding the evolution of triple gene block. Front Microbiol. 2015;6:508.
Article
PubMed
PubMed Central
Google Scholar
Morozov SY, Solovyev AG. Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol. 2003;84:1351–66.
Article
CAS
PubMed
Google Scholar
Song Y, Hong N, Wang L, Hu H, Tian R, Xu W, Ding F, Wang G. Molecular and serological diversity in apple chlorotic leaf spot virus from sand pear (Pyrus pyrifolia) in China. Eur J Plant Pathol. 2011;130:183–96.
Article
CAS
Google Scholar
Li R, Mock R, Huang Q, Abad J, Hartung J, Kinard G. A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. J Virol Methods. 2008;154:48–55.
Article
CAS
PubMed
Google Scholar
Ali S, Magne M, Chen S, Côté O, Stare BG, Obradovic N, Jamshaid L, Wang X, Bélair G, Moffett P. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses. PLoS One. 2015;10:e115042.
Google Scholar
Xu ZY, Hong N, Xing B, Wang GP. Partial molecular characterization of a Chinese isolate of grapevine leafroll-associated virus 2 and production of antisera to recombinant viral proteins. J Plant Pathol. 2006;88:89–94.
CAS
Google Scholar
Moffett P. In plant immunity: fragment complementation and co-immunoprecipitation assays for understanding R protein structure and function. Cham: Springer; 2011. p. 9–20.
Book
Google Scholar
Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 1995;11:681–4.
CAS
PubMed
Google Scholar
Sheludko YV, Sindarovska YR, Gerasymenko IM, Bannikova MA, Kuchuk NV. Comparison of several Nicotiana species as hosts for high-scale agrobacterium-mediated transient expression. Biotechnol Bioeng. 2007;96:608–14.
Article
CAS
PubMed
Google Scholar
Voinnet O, Lederer C, Baulcombe DC. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell. 2000;103:157–67.
Article
CAS
PubMed
Google Scholar
Voinnet O. Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet. 2005;6:206.
Article
CAS
PubMed
Google Scholar
Pallas V, García JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol. 2011;92:2691–705.
Article
CAS
PubMed
Google Scholar
Weber PH, Bujarski JJ. Multiple functions of capsid proteins in (+) stranded RNA viruses during plant-virus interactions. Virus Res. 2015;196:140–9.
Article
CAS
PubMed
Google Scholar
Sonoda S, Koiwa H, Kanda K, Kato H, Shimono M, Nishiguchi M. The helper component-proteinase of sweet potato feathery mottle virus facilitates systemic spread of potato virus X in Ipomoea nil. Phytopathology. 2000;90:944–50.
Article
CAS
PubMed
Google Scholar
Te J, Melcher U, Howard A, Verchot-Lubicz J. Soilborne wheat mosaic virus (SBWMV) 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing. Virol J. 2005;2:18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Valli A, Dujovny G, García JA. Protease activity, self interaction, and small interfering RNA binding of the silencing suppressor P1b from cucumber vein yellowing ipomovirus. J Virol. 2008;82:974–86.
Article
CAS
PubMed
Google Scholar
Martínez-Turiño S, Hernandez C. Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. J Gen Virol. 2009;90:519–25.
Article
PubMed
CAS
Google Scholar
Wang KD, Empleo R, Nguyen TTV, Moffett P, Sacco MA. Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses. Mol Plant Pathol. 2015;16:435–48.
Article
CAS
PubMed
Google Scholar
Hanssen IM, Thomma BP. Pepino mosaic virus: a successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Mol Plant Pathol. 2010;11:179–89.
Article
CAS
PubMed
Google Scholar
Hu X, Nie X, He C, Xiong X. Differential pathogenicity of two different recombinant PVY NTN isolates in Physalis floridana is likely determined by the coat protein gene. Virol J. 2011;8:207.
Article
PubMed
PubMed Central
Google Scholar
Mahajan SK, Chisholm ST, Whitham SA, Carrington JC. Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana. Plant J. 1998;14:177–86.
Article
CAS
PubMed
Google Scholar
Decroocq V, Salvador B, Sicard O, Glasa M, Cosson P, Svanella-Dumas L, Revers F, García JA, Candresse T. The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol Plant Microbe In. 2009;22:1302–11.
Article
CAS
Google Scholar
Carbonell A, Maliogka VI, Pérez JDJ, Salvador B, León DS, García JA, Simón-Mateo C. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow plum pox virus to adapt to new hosts. Mol Plant Microbe In. 2013;26:1211–24.
Article
CAS
Google Scholar
Wileman T. Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design? Annu Rev Microbiol. 2007;61:149–67.
Article
CAS
PubMed
Google Scholar
Gorovits R, Moshe A, Ghanim M, Czosnek H. Recruitment of the host plant heat shock protein 70 by tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One. 2013;8:e70280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yelina NE, Savenkov EI, Solovyev AG, Morozov SY, Valkonen JP. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei-and potyviruses: complementary functions between virus families. J Virol. 2002;76:12981–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunoyer P, Pfeffer S, Fritsch C, Hemmer O, Voinnet O, Richards KE. Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J. 2002;29:555–67.
Article
CAS
PubMed
Google Scholar
Senshu H, Yamaji Y, Minato N, Shiraishi T, Maejima K, Hashimto M, Miura C, Neriya Y, Namba S. A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M. J Virol. 2011;11:5211–73.
Google Scholar
Canizares MC, Taylor KM, Lomonossoff GP. Surface-exposed C-terminal amino acids of the small coat protein of cowpea mosaic virus are required for suppression of silencing. J Gen Virol. 2004;85:3431–5.
Article
CAS
PubMed
Google Scholar
Karran RA, Sanfaçon H. Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. Mol Plant Microbe In. 2014;27:933–43.
Article
CAS
Google Scholar
Olspert A, Kamsol K, Sarmiento C, Gerassimenko J, Truve E. Cocksfoot mottle virus coat protein is dispensable for the systemic infection. Virol J. 2014;11:19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mathioudakis MM, Rodríguez-Moreno L, Sempere RN, Aranda MA, Livieratos I. Multifaceted capsid proteins: multiple interactions suggest multiple roles for Pepino mosaic virus capsid protein. Mol Plant Microbe In. 2014;27:1356–69.
Article
CAS
Google Scholar
Li F, Ding S. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol. 2006;60:503–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burgyán J, Havelda Z. Viral suppressors of RNA silencing. Trends Plant Sci. 2011;16:265–72.
Article
PubMed
CAS
Google Scholar
Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H. The genome of pear (Pyrus bretschneideri Rehd.). Genome Res. 2012;12:144112–311.
Google Scholar
Liu J, Zhang X, Zhang F, Hong N, Wang G, Wang A, Wang L. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with apple stem grooving virus in response to high temperature using small RNA sequencing. BMC Genomics. 2015;16:945.
Article
PubMed
PubMed Central
CAS
Google Scholar