Aliota MT, et al. Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Res. 2017;144:223–46. https://doi.org/10.1016/j.antiviral.2017.06.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baud D, et al. An update on Zika virus infection. Lancet. 2017;390(10107):2099–109. https://doi.org/10.1016/s0140-6736(17)31450-2.
Article
PubMed
Google Scholar
Dos Santos T, et al. Zika virus and the Guillain-Barre syndrome - case series from seven countries. N Engl J Med. 2016;375(16):1598–601. https://doi.org/10.1056/NEJMc1609015.
Article
PubMed
Google Scholar
FDA. Zika Virus Response Updates from FDA|FDA. Available online: https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/zika-virus-response-updates-fda Accessed on 03 March 2021.
WHO. Dengue and Severe Dengue. Available online: https://www.who.int/health-topics/dengue-and-severe-dengue#tab=tab_1 Accessed on 03 March 2021.
Thomas SJ, Yoon IK. A Review of Dengvaxia®: development to deployment. Hum Vaccine Immunother. 2019;15(10):2295–314. https://doi.org/10.1080/21645515.2019.1658503.
Article
Google Scholar
Ong A, et al. Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore. Int Infect Dis. 2007;11(3):263–7. https://doi.org/10.1016/j.ijid.2006.02.012.
Article
Google Scholar
Guo C, et al. Global epidemiology of dengue outbreaks in 1990–2015: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2017;7:317. https://doi.org/10.3389/fcimb.2017.00317.
Article
PubMed
PubMed Central
Google Scholar
Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 2016;29(3):487–524. https://doi.org/10.1128/CMR.00072-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
CDC. Treatment Zika Virus CDC. Available online: https://www.cdc.gov/zika/symptoms/treatment.html Accessed on 3 Mar 2021.
Baz M, Boivin G. Antiviral agents in development for Zika virus infections. Pharmaceuticals (Basel, Switzerland). 2019;12(3):101. https://doi.org/10.3390/ph12030101.
Article
CAS
Google Scholar
Barrows NJ, et al. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe. 2016;20:259–70. https://doi.org/10.1016/j.chom.2016.07.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boldescu V, et al. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov. 2017;16(8):565–86. https://doi.org/10.1038/nrd.2017.33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saiz JC, Martín-Acebes MA. The race to find antivirals for Zika virus. Antimicrob Agents Chemother. 2017;61(6):e00411–7. https://doi.org/10.1128/AAC.00411-17.
Article
PubMed
PubMed Central
Google Scholar
Teixeira AH, et al. Conhecimento popular sobre o uso de plantas medicinais no município de Sobral-Ceará, Brasil. SANARE. 2014;13(1):23–8.
Google Scholar
Atanasov AG, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33(8):1582–614. https://doi.org/10.1016/j.biotechadv.2015.08.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeCorte BL. Underexplored opportunities for natural products in drug discovery. J Med Chem. 2016;59(20):9295–304. https://doi.org/10.1021/acs.jmedchem.6b00473.
Article
CAS
PubMed
Google Scholar
Chaudhuri J. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018;28(3):337–52. https://doi.org/10.1016/j.cmet.2018.08.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.
Article
CAS
PubMed
Google Scholar
Palombo EA. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytother Res. 2006;20(9):717–24. https://doi.org/10.1002/ptr.1907.
Article
CAS
PubMed
Google Scholar
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4.
Article
CAS
PubMed
Google Scholar
Betancur-Galvis L, et al. Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem Inst Oswaldo Cruz. 1999;94(4):531–5. https://doi.org/10.1590/s0074-02761999000400019.
Article
CAS
PubMed
Google Scholar
Kudi AC, Myint MS. Antiviral activity of some Nigerian medicinal plant extracts. J Ethnopharmocol. 1999;68:289–94. https://doi.org/10.1016/S0378-8741(99)00049-5.
Article
CAS
Google Scholar
Iversen PW, Beck B, Chen YF, et al., HTS Assay Validation. 2012 May In: Markossian S, Grossman A, Brimacombe K, et al., editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK83783/
Dulbecco R, Vogt M. Some problems of animal virology as studied by the plaque technique. Cold Spring Harb Symp Quant Biol. 1953;18:273–9. https://doi.org/10.1101/sqb.1953.018.01.039.
Article
CAS
PubMed
Google Scholar
Faral-Tello P, et al. Cytotoxic, virucidal, and antiviral activity of South American plant and algae extracts. Sci World J. 2012;1(5):174837–42. https://doi.org/10.1100/2012/174837.
Article
Google Scholar
Zandi K, et al. Novel antiviral activity of baicalein against dengue virus. BMC Complement Altern Med. 2012;12(214):1–9. https://doi.org/10.1186/1472-6882-12-214.
Article
CAS
Google Scholar
Horai H, et al. Massbank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45(7):703–14. https://doi.org/10.1002/jms.1777.
Article
CAS
PubMed
Google Scholar
Allard PM, et al. Integration of molecular networking and in-silico Ms/Ms fragmentation for natural products dereplication. Anal Chem. 2016;88(6):3317–23. https://doi.org/10.1021/acs.analchem.5b04804.
Article
CAS
PubMed
Google Scholar
Wang P, et al. Anti-dengue virus activity and structure-activity relationship studies of lycorine derivatives. ChemMedChem. 2014;9(7):1522–33. https://doi.org/10.1002/cmdc.201300505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fivelman QL, Adagu IS, Warhurst DC. Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. Antimicrob Agents Chemother. 2004;48(11):4097–102. https://doi.org/10.1128/AAC.48.11.4097-4102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seifert K, Croft SL. In vitro and in vivo interactions between miltefosine and other antileishmanial drugs. Antimicrob Agents Chemother. 2006;50(1):73–9. https://doi.org/10.1128/AAC.50.1.73-79.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52(1):1. https://doi.org/10.1093/jac/dkg301.
Article
PubMed
Google Scholar
Tallarida RJ. Drug synergism: its detection and applications. J Pharmacol Exp Ther. 2001;298(3):865–72.
CAS
PubMed
Google Scholar
Tallarida RJ. Revisiting the isobole and related quantitative methods for assessing drug synergism. J Pharm Exp Ther. 2012;342(1):2–8. https://doi.org/10.1124/jpet.112.193474.
Article
CAS
Google Scholar
Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066–72. https://doi.org/10.1021/acs.jmedchem.5b00104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pires DEV, et al. Cutoff Scanning Matrix (CSM): structural classification and function prediction by protein inter-residue distance patterns. BMC Genomics. 2011. https://doi.org/10.1186/1471-2164-12-S4-S12.
Article
PubMed
PubMed Central
Google Scholar
Pires DEV, et al. aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction. Bioinformatics. 2013;29(7):855–61. https://doi.org/10.1093/bioinformatics/btt058.
Article
CAS
PubMed
Google Scholar
Pires DEV, Ascher DB. mycoCSM: using graph-based signatures to identify safe potent hits against Mycobacteria. J Chem Inf Model. 2020;60(7):3450–6. https://doi.org/10.1021/acs.jcim.0c00362.
Article
CAS
PubMed
Google Scholar
Moraes CT. Estudo fitoquímico das aéreas de Worsleya procesra (Lem.) Traub (Amaryllidaceae). 2016. Dissertação (Mestrado em Química) Centro de Ciências Exatas da Universidade Federal do Espírito Santo, Espírito Santo. https://repositorio.ufes.br/bitstream/10/7319/1/tese_10338_Disserta%C3%A7%C3%A3o%20FINAL%20Carolina%20PDF%20%281%29.pdf
Katoch D. Narciclasine-4-O-β-D-xylopyranoside, a new narciclasine glycoside from Zephyranthes minuta. Nat Prod Res. 2019;34(2):233–40. https://doi.org/10.1080/14786419.2018.1527836.
Article
CAS
PubMed
Google Scholar
Schuhmacher A, Reichling J, Schnitzler P. Virucidal effect of peppermint oil on the enveloped viruses Herpes simplex virus type 1 and type 2 in vitro. Phytomedicine. 2003;10(6–7):504–10. https://doi.org/10.1078/094471103322331467.
Article
CAS
PubMed
Google Scholar
Gao F, et al. Novel binding between pre-membrane protein and claudin-1 is required for efficient dengue virus entry. Biochem Biophys Res Commun. 2010;391(1):952–7. https://doi.org/10.1016/j.bbrc.2009.11.172.
Article
CAS
PubMed
Google Scholar
Zhang Q, et al. The stem region of premembrane protein plays an important role in the virus surface protein rearrangement during dengue maturation. J Biol Chem. 2012;287(48):40525–34. https://doi.org/10.1074/jbc.M112.384446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo M, et al. ZIKV viral proteins and their roles in virus-host interactions. Sci China Life Sci. 2020;14:1–11. https://doi.org/10.1007/s11427-020-1818-4.
Article
CAS
Google Scholar
Chen H, et al. Antiviral activity of lycorine against Zika virus in vivo and in vitro. Virology. 2020;546:88–97. https://doi.org/10.1016/j.virol.2020.04.009.
Article
CAS
PubMed
Google Scholar
Hwang YC, et al. Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. Antiviral Res. 2008;77(3):232–6. https://doi.org/10.1016/j.antiviral.2007.12.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005;67(1):18–23. https://doi.org/10.1016/j.antiviral.2005.02.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renard-Nozaki J, et al. effect of alkaloids isolated from Amaryllidaceae on Herpes simplex virus. Res Virol. 1989;140:115–28. https://doi.org/10.1016/s0923-2516(89)80089-5.
Article
CAS
PubMed
Google Scholar
Gabrielsen B, et al. Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. J Nat Prod. 1992;55(11):1569–81. https://doi.org/10.1021/np50089a003.
Article
CAS
PubMed
Google Scholar
Cedrón JC, et al. Synthesis and antiplasmodial activity of lycorine derivatives. Bioorg Med Chem. 2010;18(13):4694–701. https://doi.org/10.1016/j.bmc.2010.05.023.
Article
CAS
PubMed
Google Scholar
Chen D, et al. Design, synthesis and structure-activity relationship optimization of lycorine derivatives for HCV inhibition. Sci Rep. 2015;5(1):14972. https://doi.org/10.1038/srep14972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Y, et al. A conserved inhibitory mechanism of a lycorine derivative against enterovirus and Hepatitis C virus. Antimicrob Agents Chemother. 2015;60(2):913–24. https://doi.org/10.1128/aac.02274-15.
Article
PubMed
Google Scholar
Furusawa E. Isolation of pretazettine from Narciussus tazetta L. Chem Pharm Bull. 1976;24(2):336–8. https://doi.org/10.1248/cpb.24.336.
Article
CAS
Google Scholar
Papas TS, et al. Inhibition of DNA polymerase of avian myeloblastosis virus by an alkaloid extract from Narcissus tazetta L. Biochem Biophys Res Commun. 1973;52(1):88–92. https://doi.org/10.1016/0006-291x(73)90957-1.
Article
CAS
PubMed
Google Scholar
Suzuki N, et al. Therapeutic activity of Narcissus alkaloids on Rauscher leukemia: antiviral effect in vitro and rational drug combination in vivo. Proc Soc Exp Biol Med. 1974;145(3):771–7. https://doi.org/10.3181/00379727-145-37892.
Article
CAS
PubMed
Google Scholar
Jimenez A, et al. Inhibitors of protein synthesis in eukaryotic cells: comparative effects of some Amaryllidaceae alkaloids. Biochim Biophys Acta. 1976;425(3):342–8. https://doi.org/10.1016/0005-2787(76)90261-6.
Article
CAS
PubMed
Google Scholar
Martin SF. The Amaryllidaceae alkaloids. Chapter 3. In: Brossi A, editor. The alkaloids: chemistry and pharmacology, vol. 30. New York: Academic Press; 1987. p. 251–376.
Google Scholar
Furusawa E, et al. Therapeutic activity of pretazettine on Rauscher leukemia: combination of antiviral activity and cellular protein inhibition. Chemotherapy. 1978;24(4):259–66. https://doi.org/10.1159/000237790.
Article
CAS
PubMed
Google Scholar
Furusawa E, et al. Therapeutic activity of pretazettine on Rauscher leukemia: comparison with the related Amaryllidaceae alkaloids. Chemotherapy. 1980;26(1):36–45. https://doi.org/10.1159/000237881.
Article
CAS
PubMed
Google Scholar
Scott LJ, Perry CM. Interferon-alpha-2b plus ribavirin. Drugs. 2002;62(3):507–56. https://doi.org/10.2165/00003495-200262030-00009.
Article
CAS
PubMed
Google Scholar
Whegang SY, Tahar R, Foumane VN, et al. Efficacy of non-artemisinin- and artemisinin-based combination therapies for uncomplicated falciparum malaria in Cameroon. Malaria J. 2010. https://doi.org/10.1186/1475-2875-9-56.
Article
Google Scholar
Costa-Gouveia J, et al. Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep. 2017;7:5390. https://doi.org/10.1038/s41598-017-05453-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diro E, et al. A randomized trial of Am Bisome monotherapy and Am Bisome and miltefosine combination to treat visceral leishmaniasis in HIV co-infected patients in Ethiopia. PLOS Negl Trop Dis. 2019;13(1):e0006988. https://doi.org/10.1371/journal.pntd.0006988.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonçalves-Oliveira LF, et al. The combination therapy of meglumine antimoniate and oxiranes (epoxy-α-lapachone and epoxymethyl-lawsone) enhance the leishmanicidal effect in mice infected by Leishmania (Leishmania) amazonensis. Int J Parasitol Drugs Drug Resist. 2019;10:101–8. https://doi.org/10.1016/j.ijpddr.2019.08.002.
Article
PubMed
PubMed Central
Google Scholar
Moreno S, et al. Two-drug vs. three-drug combinations for HIV-1: Do we have enough data to make the switch? HIV Med. 2019;4:2–12. https://doi.org/10.1111/hiv.12716.
Article
Google Scholar
Alven S, Aderibigbe B. Combination therapy strategies for the treatment of malaria. Molecules. 2019;24(19):3601. https://doi.org/10.3390/molecules24193601.
Article
CAS
PubMed Central
Google Scholar
Ceriotti G. Narciclasine: an antimitotic substance from Narcissus bulbs. Nature. 1967;213:595–6. https://doi.org/10.1038/213595a0.
Article
CAS
PubMed
Google Scholar
Pettit GR, et al. Antineoplastic agents, 256. Cell growth inhibitory isocarbostyrils from Hymenocallis. J Nat Prod. 1993;56(10):1682–7. https://doi.org/10.1021/np50100a004.
Article
CAS
PubMed
Google Scholar
Van Goietsenoven G, et al. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers. Med Res Rev. 2013;33(2):439–55. https://doi.org/10.1002/med.21253.
Article
CAS
PubMed
Google Scholar
Dumont P, et al. The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts. Neoplasia. 2007;9(9):766–76. https://doi.org/10.1593/neo.07535.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ingrassia L, et al. Structure-activity relationship analysis of novel derivatives of narciclasine (an Amaryllidaceae isocarbostyril derivative) as potential anticancer agents. J Med Chem. 2009;52(4):1100–14. https://doi.org/10.1021/jm8013585.
Article
CAS
PubMed
Google Scholar
Mikami M, et al. Suppressive activity of lycoricidinol (narciclasine) against cytotoxicity of neutrophil-derived calprotectin, and its suppressive effect on rat adjuvant arthritis model. Biol Pharm Bull. 1999;22(7):674–8. https://doi.org/10.1248/bpb.22.674.
Article
CAS
PubMed
Google Scholar
Kim J, et al. Effect of Lycoris chejuensis and its active components on experimental models of Alzheimer’s Disease. J Agricult Food Chem. 2015;63(31):6979–88. https://doi.org/10.1021/acs.jafc.5b00889.
Article
CAS
Google Scholar
Fürst R. Narciclasine – an Amaryllidaceae alkaloid with potent antitumor and anti-inflammatory properties. Planta Med. 2016;82(16):1389–94. https://doi.org/10.1055/s-0042-115034.
Article
CAS
PubMed
Google Scholar
Llabres JM, et al. Two alkaloids from Narcissus requienii. Phytochemistry. 1986;25(6):1453–9. https://doi.org/10.1016/S0031-9422(00)81308-4.
Article
CAS
Google Scholar
Cedrón JC, et al. Antiproliferative and structure activity relationships of Amaryllidaceae alkaloids. Molecules. 2015;20(8):13854–63. https://doi.org/10.3390/molecules200813854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoch D, et al. Pseudolycorine N-oxide, a new N-oxide from Narcissus tazetta. Nat Prod Res. 2019;34(14):2051–8. https://doi.org/10.1080/14786419.2019.1574785.
Article
CAS
PubMed
Google Scholar
Ghosal S, et al. Alkaloids of Haemanthus kalbreyeri. Phytochemistry. 1985;24(8):1825–8. https://doi.org/10.1016/S0031-9422(00)82560-1.
Article
CAS
Google Scholar
Ghosal S, Singh SK, Srivastava RS. Alkaloids of Zephyranthes flava. Phytochemistry. 1986;25(8):1975–8. https://doi.org/10.1016/S0031-9422(00)81187-5.
Article
CAS
Google Scholar
Labraña J, et al. Alkaloids from Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Phytochemistry. 2002;60(8):847–52. https://doi.org/10.1016/s0031-9422(02)00154-1.
Article
PubMed
Google Scholar
Kihara M, et al. Incartine, a biosynthetic intermediate, from the flowers of Lycoris incarnata. Heterocycles. 1992;34(7):1299–301. https://doi.org/10.3987/COM-92-6068.
Article
CAS
Google Scholar
Kihara M, et al. Isolation and structure elucidation of a novel alkaloid, incartine, a supposed biosynthetic intermediate, from flowers of Lycoris incarnata. Chem Pharm Bull. 1994;42(2):289–92. https://doi.org/10.1248/cpb.42.289.
Article
CAS
Google Scholar
Kihara M, Ozaki T, Kobayashi S, Shingu T. Alkaloidal constituents of Leucojum autumnale L. (Amaryllidaceae). Chem Pharm Bull. 1995;43(2):318–20. https://doi.org/10.1248/cpb.43.318.
Article
CAS
Google Scholar
Zhu YY, Li X, Yu HY, et al. Alkaloids from the bulbs of Lycoris longituba and their neuroprotective and acetylcholinesterase inhibitory activities. Arch Pharm Research. 2015;38(5):604–13. https://doi.org/10.1007/s12272-014-0397-2.
Article
CAS
Google Scholar
Stephenson GR, Roe C, Sandoe EJ. Electrophilic C12 Building Blocks for Alkaloids: 1,1 Iterative Organoiron-Mediated Routes to (±)-Lycoramine and (±)-Maritidine. Eur J Org Chem. 2011;9:1664–81. https://doi.org/10.1002/ejoc.201001394.
Article
CAS
Google Scholar
European Patent Office (EP2311463A1). Analogues of galanthamine and lycoramine have activity as modulators of nicotinic receptors, see: a) B. Davis, US patent US 148253, 2002; b) B. Davis, PCT Int. Appl. WO 2001043697, 2001.
Boobis A, Gundert-Remy U, Kremers P, et al. In silico prediction of ADME and pharmacokinetics. Eur J Pharm Sci. 2002;17(4–5):183–93. https://doi.org/10.1016/s0928-0987(02)00185-9.
Article
CAS
PubMed
Google Scholar
Zhang D, Luo G, Ding X, et al. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sinica B. 2012;2(6):549–61. https://doi.org/10.1016/j.apsb.2012.10.004.
Article
Google Scholar