Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991;72(Pt 9):2059–64.
Article
CAS
Google Scholar
Mendelson M, Monard S, Sissons P, Sinclair J. Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol. 1996;77(Pt 12):3099–102.
Article
CAS
Google Scholar
Sinzger C, Jahn G. Human cytomegalovirus cell tropism and pathogenesis. Intervirology. 1996;39(5–6):302–19.
Article
CAS
Google Scholar
Sinclair J, Sissons P. Latent and persistent infections of monocytes and macrophages. Intervirology. 1996;39(5–6):293–301.
Article
CAS
Google Scholar
Poole E, Sinclair J. Sleepless latency of human cytomegalovirus. Med Microbiol Immunol. 2015;204(3):421–9. https://doi.org/10.1007/s00430-015-0401-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodrum F. Human cytomegalovirus latency: approaching the Gordian knot. Annu Rev Virol. 2016;3(1):333–57. https://doi.org/10.1146/annurev-virology-110615-042422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinzger C, Grefte A, Plachter B, Gouw AS, The TH, Jahn G. Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol. 1995;76(Pt 4):741–50. https://doi.org/10.1099/0022-1317-76-4-741.
Article
CAS
PubMed
Google Scholar
Bentz GL, Jarquin-Pardo M, Chan G, Smith MS, Sinzger C, Yurochko AD. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J Virol. 2006;80(23):11539–55.
Article
CAS
Google Scholar
Chan G, Nogalski MT, Stevenson EV, Yurochko AD. Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes: a strategy for viral dissemination. J Leukoc Biol. 2012;92(4):743–52. https://doi.org/10.1189/jlb.0112040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith MS, Bentz GL, Smith PM, Bivins ER, Yurochko AD. HCMV activates PI(3)K in monocytes and promotes monocyte motility and transendothelial migration in a PI(3)K-dependent manner. J Leukoc Biol. 2004;76(1):65–76.
Article
CAS
Google Scholar
Min CK, Shakya AK, Lee BJ, Streblow DN, Caposio P, Yurochko AD. The differentiation of human cytomegalovirus infected-monocytes is required for viral replication. Front Cell Infect Microbiol. 2020;10:368. https://doi.org/10.3389/fcimb.2020.00368.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins-McMillen D, Chesnokova L, Lee BJ, Fulkerson HL, Brooks R, Mosher BS, et al. HCMV infection and apoptosis: how do monocytes survive HCMV infection? Viruses. 2018. https://doi.org/10.3390/v10100533.
Article
PubMed
PubMed Central
Google Scholar
Smith MS, Bentz GL, Alexander JS, Yurochko AD. Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence. J Virol. 2004;78(9):4444–53. https://doi.org/10.1128/jvi.78.9.4444-4453.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor-Wiedeman J, Sissons P, Sinclair J. Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J Virol. 1994;68(3):1597–604.
Article
CAS
Google Scholar
Chan G, Nogalski MT, Bentz GL, Smith MS, Parmater A, Yurochko AD. PI3K-dependent upregulation of Mcl-1 by human cytomegalovirus is mediated by epidermal growth factor receptor and inhibits apoptosis in short-lived monocytes. J Immunol. 2010;184(6):3213–22. https://doi.org/10.4049/jimmunol.0903025.
Article
CAS
PubMed
Google Scholar
Cojohari O, Peppenelli MA, Chan GC. Human cytomegalovirus induces an atypical activation of Akt to stimulate the survival of short-lived monocytes. J Virol. 2016;90(14):6443–52. https://doi.org/10.1128/JVI.00214-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peppenelli MA, Arend KC, Cojohari O, Moorman NJ, Chan GC. Human cytomegalovirus stimulates the synthesis of select Akt-dependent antiapoptotic proteins during viral entry to promote survival of infected monocytes. J Virol. 2016;90(6):3138–47. https://doi.org/10.1128/JVI.02879-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peppenelli MA, Miller MJ, Altman AM, Cojohari O, Chan GC. Aberrant regulation of the Akt signaling network by human cytomegalovirus allows for targeting of infected monocytes. Antiviral Res. 2018;158:13–24. https://doi.org/10.1016/j.antiviral.2018.07.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahmud J, Miller MJ, Altman AM, Chan GC. Human cytomegalovirus glycoprotein-initiated signaling mediates the aberrant activation of Akt. J Virol. 2020. https://doi.org/10.1128/JVI.00167-20.
Article
PubMed
PubMed Central
Google Scholar
Soderberg-Naucler C, Streblow DN, Fish KN, Allan-Yorke J, Smith PP, Nelson JA. Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J Virol. 2001;75(16):7543–54.
Article
CAS
Google Scholar
Ibanez CE, Schrier R, Ghazal P, Wiley C, Nelson JA. Human cytomegalovirus productively infects primary differentiated macrophages. J Virol. 1991;65(12):6581–8.
Article
CAS
Google Scholar
Reddehase MJ, Lemmermann NAW. Cellular reservoirs of latent cytomegaloviruses. Med Microbiol Immunol. 2019;208(3–4):391–403. https://doi.org/10.1007/s00430-019-00592-y.
Article
CAS
PubMed
Google Scholar
Soderberg-Naucler C, Fish KN, Nelson JA. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell. 1997;91(1):119–26.
Article
CAS
Google Scholar
Hahn G, Jores R, Mocarski ES. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A. 1998;95(7):3937–42. https://doi.org/10.1073/pnas.95.7.3937.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu D, Pan C, Sheng J, Liang H, Bian Z, Liu Y, et al. Human cytomegalovirus reprogrammes haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency. Nat Microbiol. 2018;3(4):503–13. https://doi.org/10.1038/s41564-018-0131-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mason R, Groves IJ, Wills MR, Sinclair JH, Reeves MB. Human cytomegalovirus major immediate early transcripts arise predominantly from the canonical major immediate early promoter in reactivating progenitor-derived dendritic cells. J Gen Virol. 2020;101(6):635–44. https://doi.org/10.1099/jgv.0.001419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchini A, Liu H, Zhu H. Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol. 2001;75(4):1870–8. https://doi.org/10.1128/jvi.75.4.1870-1878.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mocarski ES, Kemble GW, Lyle JM, Greaves RF. A deletion mutant in the human cytomegalovirus gene encoding IE1(491aa) is replication defective due to a failure in autoregulation. Proc Natl Acad Sci USA. 1996;93(21):11321–6. https://doi.org/10.1073/pnas.93.21.11321.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dooley AL, O’Connor CM. Regulation of the MIE locus during HCMV latency and reactivation. Pathogens. 2020. https://doi.org/10.3390/pathogens9110869.
Article
PubMed
PubMed Central
Google Scholar
Compton T, Nowlin DM, Cooper NR. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology. 1993;193(2):834–41.
Article
CAS
Google Scholar
Compton T. Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends Cell Biol. 2004;14(1):5–8.
Article
CAS
Google Scholar
Huber MT, Compton T. The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. J Virol. 1998;72(10):8191–7. https://doi.org/10.1128/jvi.72.10.8191-8197.1998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huber MT, Compton T. Intracellular formation and processing of the heterotrimeric gH-gL-gO (gCIII) glycoprotein envelope complex of human cytomegalovirus. J Virol. 1999;73(5):3886–92. https://doi.org/10.1128/jvi.73.5.3886-3892.1999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yurochko AD, Hwang ES, Rasmussen L, Keay S, Pereira L, Huang ES. The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kappaB during infection. J Virol. 1997;71(7):5051–9. https://doi.org/10.1128/jvi.71.7.5051-5059.1997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adler B, Scrivano L, Ruzcics Z, Rupp B, Sinzger C, Koszinowski U. Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J Gen Virol. 2006;87(Pt 9):2451–60. https://doi.org/10.1099/vir.0.81921-0.
Article
CAS
PubMed
Google Scholar
Straschewski S, Patrone M, Walther P, Gallina A, Mertens T, Frascaroli G. Protein pUL128 of human cytomegalovirus is necessary for monocyte infection and blocking of migration. J Virol. 2011;85(10):5150–8.
Article
CAS
Google Scholar
Nogalski MT, Chan GC, Stevenson EV, Collins-McMillen DK, Yurochko AD. The HCMV gH/gL/UL128-131 complex triggers the specific cellular activation required for efficient viral internalization into target monocytes. PLoS Pathog. 2013;9(7): e1003463. https://doi.org/10.1371/journal.ppat.1003463.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Huong SM, Chiu ML, Raab-Traub N, Huang ES. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature. 2003;424(6947):456–61.
Article
CAS
Google Scholar
Chan G, Bivins-Smith ER, Smith MS, Yurochko AD. NF-kappaB and phosphatidylinositol 3-kinase activity mediates the HCMV-induced atypical M1/M2 polarization of monocytes. Virus Res. 2009;144(1–2):329–33. https://doi.org/10.1016/j.virusres.2009.04.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JH, Collins-McMillen D, Buehler JC, Goodrum FD, Yurochko AD. Human cytomegalovirus requires epidermal growth factor receptor signaling to enter and initiate the early steps in the establishment of latency in CD34(+) human progenitor cells. J Virol. 2017. https://doi.org/10.1128/JVI.01206-16.
Article
PubMed
PubMed Central
Google Scholar
Kim JH, Collins-McMillen D, Caposio P, Yurochko AD. Viral binding-induced signaling drives a unique and extended intracellular trafficking pattern during infection of primary monocytes. Proc Natl Acad Sci USA. 2016;113(31):8819–24. https://doi.org/10.1073/pnas.1604317113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eales-Reynolds LJ, Laver H, Modjtahedi H. Evidence for the expression of the EGF receptor on human monocytic cells. Cytokine. 2001;16(5):169–72.
Article
CAS
Google Scholar
Lamb DJ, Modjtahedi H, Plant NJ, Ferns GA. EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques. Atherosclerosis. 2004;176(1):21–6.
Article
CAS
Google Scholar
Martinez-Martin N, Marcandalli J, Huang CS, Arthur CP, Perotti M, Foglierini M, et al. An unbiased screen for human cytomegalovirus identifies neuropilin-2 as a central viral receptor. Cell. 2018;174(5):1158-71.e19. https://doi.org/10.1016/j.cell.2018.06.028.
Article
CAS
PubMed
Google Scholar
Xiaofei E, Meraner P, Lu P, Perreira JM, Aker AM, McDougall WM, et al. OR14I1 is a receptor for the human cytomegalovirus pentameric complex and defines viral epithelial cell tropism. Proc Natl Acad Sci USA. 2019;116(14):7043–52. https://doi.org/10.1073/pnas.1814850116.
Article
CAS
Google Scholar
Hochdorfer D, Florin L, Sinzger C, Lieber D. Tetraspanin CD151 promotes initial events in human cytomegalovirus infection. J Virol. 2016;90(14):6430–42. https://doi.org/10.1128/jvi.00145-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanarsdall AL, Pritchard SR, Wisner TW, Liu J, Jardetzky TS, Johnson DC. CD147 promotes entry of pentamer-expressing human cytomegalovirus into epithelial and endothelial cells. MBio. 2018. https://doi.org/10.1128/mBio.00781-18.
Article
PubMed
PubMed Central
Google Scholar
Soroceanu L, Akhavan A, Cobbs CS. Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature. 2008;455(7211):391–5. https://doi.org/10.1038/nature07209.
Article
CAS
PubMed
Google Scholar
Kabanova A, Marcandalli J, Zhou T, Bianchi S, Baxa U, Tsybovsky Y, et al. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nat Microbiol. 2016;1(8):16082. https://doi.org/10.1038/nmicrobiol.2016.82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Prager A, Boos S, Resch M, Brizic I, Mach M, et al. Human cytomegalovirus glycoprotein complex gH/gL/gO uses PDGFR-α as a key for entry. PLoS Pathog. 2017;13(4): e1006281. https://doi.org/10.1371/journal.ppat.1006281.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan G, Bivins-Smith ER, Smith MS, Smith PM, Yurochko AD. Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. J Immunol. 2008;181(1):698–711.
Article
CAS
Google Scholar
Champion TC, Partridge LJ, Ong SM, Malleret B, Wong SC, Monk PN. Monocyte subsets have distinct patterns of tetraspanin expression and different capacities to form multinucleate giant cells. Front Immunol. 2018;9:1247. https://doi.org/10.3389/fimmu.2018.01247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holden JT, Geller RB, Farhi DC, Holland HK, Stempora LL, Phillips CN, et al. Characterization of Thy-1 (CDw90) expression in CD34+ acute leukemia. Blood. 1995;86(1):60–5.
Article
CAS
Google Scholar
Zhu P, Ding J, Zhou J, Dong WJ, Fan CM, Chen ZN. Expression of CD147 on monocytes/macrophages in rheumatoid arthritis: its potential role in monocyte accumulation and matrix metalloproteinase production. Arthritis Res Ther. 2005;7(5):R1023–33. https://doi.org/10.1186/ar1778.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy S, Bag AK, Singh RK, Talmadge JE, Batra SK, Datta K. Multifaceted role of neuropilins in the immune system: potential targets for immunotherapy. Front Immunol. 2017;8:1228. https://doi.org/10.3389/fimmu.2017.01228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishna BA, Miller WE, O’Connor CM. US28: HCMV’s Swiss Army Knife. Viruses. 2018. https://doi.org/10.3390/v10080445.
Article
PubMed
PubMed Central
Google Scholar
Humby MS, O’Connor CM. Human cytomegalovirus US28 Is important for latent infection of hematopoietic progenitor cells. J Virol. 2015;90(6):2959–70. https://doi.org/10.1128/JVI.02507-15.
Article
CAS
PubMed
Google Scholar
Margulies BJ, Browne H, Gibson W. Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology. 1996;225(1):111–25. https://doi.org/10.1006/viro.1996.0579.
Article
CAS
PubMed
Google Scholar
O’Connor CM, Shenk T. Human cytomegalovirus pUS27 G protein-coupled receptor homologue is required for efficient spread by the extracellular route but not for direct cell-to-cell spread. J Virol. 2011;85(8):3700–7. https://doi.org/10.1128/JVI.02442-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Connor CM, Shenk T. Human cytomegalovirus pUL78 G protein-coupled receptor homologue is required for timely cell entry in epithelial cells but not fibroblasts. J Virol. 2012;86(21):11425–33. https://doi.org/10.1128/JVI.05900-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varnum SM, Streblow DN, Monroe ME, Smith P, Auberry KJ, Pasa-Tolic L, et al. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol. 2004;78(20):10960–6. https://doi.org/10.1128/JVI.78.20.10960-10966.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishna BA, Humby MS, Miller WE, O’Connor CM. Human cytomegalovirus G protein-coupled receptor US28 promotes latency by attenuating c-fos. Proc Natl Acad Sci USA. 2019;116(5):1755–64. https://doi.org/10.1073/pnas.1816933116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishna BA, Wass AB, Dooley AL, O’Connor CM. CMV-encoded GPCR pUL33 activates CREB and facilitates its recruitment to the MIE locus for efficient viral reactivation. J Cell Sci. 2021. https://doi.org/10.1242/jcs.254268.
Article
PubMed
Google Scholar
Chan G, Nogalski MT, Yurochko AD. Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. Proc Natl Acad Sci USA. 2009;106(52):22369–74. https://doi.org/10.1073/pnas.0908787106.
Article
PubMed
PubMed Central
Google Scholar
Fulkerson HL, Chesnokova LS, Kim JH, Mahmud J, Frazier LE, Chan GC, et al. HCMV-induced signaling through gB-EGFR engagement is required for viral trafficking and nuclear translocation in primary human monocytes. Proc Natl Acad Sci USA. 2020;117(32):19507–16. https://doi.org/10.1073/pnas.2003549117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saffert RT, Kalejta RF. Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol. 2006;80(8):3863–71. https://doi.org/10.1128/jvi.80.8.3863-3871.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saffert RT, Kalejta RF. Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J Virol. 2007;81(17):9109–20. https://doi.org/10.1128/JVI.00827-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saffert RT, Penkert RR, Kalejta RF. Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J Virol. 2010;84(11):5594–604. https://doi.org/10.1128/jvi.00348-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JH, Kalejta RF. Human cytomegalovirus enters the primary CD34(+) hematopoietic progenitor cells where it establishes latency by macropinocytosis. J Virol. 2019. https://doi.org/10.1128/jvi.00452-19.
Article
PubMed
PubMed Central
Google Scholar
Groves IJ, Sinclair JH. Knockdown of hDaxx in normally non-permissive undifferentiated cells does not permit human cytomegalovirus immediate-early gene expression. J Gen Virol. 2007;88(Pt 11):2935–40. https://doi.org/10.1099/vir.0.83019-0.
Article
CAS
PubMed
Google Scholar
Wagenknecht N, Reuter N, Scherer M, Reichel A, Muller R, Stamminger T. Contribution of the major ND10 proteins PML, hDaxx and Sp100 to the regulation of human cytomegalovirus latency and lytic replication in the monocytic cell line THP-1. Viruses. 2015;7(6):2884–907. https://doi.org/10.3390/v7062751.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isern E, Gustems M, Messerle M, Borst E, Ghazal P, Angulo A. The activator protein 1 binding motifs within the human cytomegalovirus major immediate-early enhancer are functionally redundant and act in a cooperative manner with the NF-{kappa}B sites during acute infection. J Virol. 2011;85(4):1732–46. https://doi.org/10.1128/JVI.01713-10.
Article
CAS
PubMed
Google Scholar
Kew VG, Yuan J, Meier J, Reeves MB. Mitogen and stress activated kinases act co-operatively with CREB during the induction of human cytomegalovirus immediate-early gene expression from latency. PLoS Pathog. 2014;10(6): e1004195. https://doi.org/10.1371/journal.ppat.1004195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy JC, Fischle W, Verdin E, Sinclair JH. Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J. 2002;21(5):1112–20. https://doi.org/10.1093/emboj/21.5.1112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reeves MB, Lehner PJ, Sissons JGP, Sinclair JH. An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol. 2005;86(Pt 11):2949–54. https://doi.org/10.1099/vir.0.81161-0.
Article
CAS
PubMed
Google Scholar
Reeves MB, MacAry PA, Lehner PJ, Sissons JG, Sinclair JH. Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A. 2005;102(11):4140–5. https://doi.org/10.1073/pnas.0408994102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dupont L, Du L, Poulter M, Choi S, McIntosh M, Reeves MB. Src family kinase activity drives cytomegalovirus reactivation by recruiting MOZ histone acetyltransferase activity to the viral promoter. J Biol Chem. 2019;294(35):12901–10. https://doi.org/10.1074/jbc.RA119.009667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao J, Deng J, Lv L, Kang Q, Ma P, Yan F, et al. Hydrogen peroxide induce human cytomegalovirus replication through the activation of p38-MAPK signaling pathway. Viruses. 2015;7(6):2816–33. https://doi.org/10.3390/v7062748.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reeves MB, Breidenstein A, Compton T. Human cytomegalovirus activation of ERK and myeloid cell leukemia-1 protein correlates with survival of latently infected cells. Proc Natl Acad Sci USA. 2012;109(2):588–93. https://doi.org/10.1073/pnas.1114966108.
Article
PubMed
Google Scholar
Buehler J, Carpenter E, Zeltzer S, Igarashi S, Rak M, Mikell I, et al. Host signaling and EGR1 transcriptional control of human cytomegalovirus replication and latency. PLoS Pathog. 2019;15(11): e1008037. https://doi.org/10.1371/journal.ppat.1008037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yurochko AD, Huang ES. Human cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. J Immunol. 1999;162(8):4806–16.
CAS
PubMed
Google Scholar
Krishna BA, Poole EL, Jackson SE, Smit MJ, Wills MR, Sinclair JH. Latency-associated expression of human cytomegalovirus US28 attenuates cell signaling pathways to maintain latent infection. MBio. 2017. https://doi.org/10.1128/mBio.01754-17.
Article
PubMed
PubMed Central
Google Scholar
Roche KL, Nukui M, Krishna BA, O’Connor CM, Murphy EA. Selective 4-thiouracil labeling of RNA transcripts within latently infected cells after infection with human cytomegalovirus expressing functional uracil phosphoribosyltransferase. J Virol. 2018. https://doi.org/10.1128/JVI.00880-18.
Article
PubMed
PubMed Central
Google Scholar
Albert B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002. p. 1616.
Google Scholar
Feire AL, Koss H, Compton T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc Natl Acad Sci USA. 2004;101(43):15470–5.
Article
CAS
Google Scholar
Wang X, Huang DY, Huong SM, Huang ES. Integrin ab3 is a coreceptor for human cytomegalovirus. Nat Med. 2005;11(5):515–21.
Article
CAS
Google Scholar
Nogalski MT, Chan G, Stevenson EV, Gray S, Yurochko AD. Human cytomegalovirus-regulated paxillin in monocytes links cellular pathogenic motility to the process of viral entry. J Virol. 2011;85(3):1360–9. https://doi.org/10.1128/JVI.02090-10.
Article
CAS
PubMed
Google Scholar
Feire AL, Roy RM, Manley K, Compton T. The glycoprotein B disintegrin-like domain binds beta 1 integrin to mediate cytomegalovirus entry. J Virol. 2010;84(19):10026–37. https://doi.org/10.1128/JVI.00710-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Compton T, Nepomuceno RR, Nowlin DM. Human cytomegalovirus penetrates host cells by pH-independent fusion at the cell surface. Virology. 1992;191(1):387–95. https://doi.org/10.1016/0042-6822(92)90200-9.
Article
CAS
PubMed
Google Scholar
Aslam Y, Williamson J, Romashova V, Elder E, Krishna B, Wills M, et al. Human cytomegalovirus upregulates expression of HCLS1 resulting in increased cell motility and transendothelial migration during latency. iScience. 2019;20:60–72. https://doi.org/10.1016/j.isci.2019.09.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bjorge JD, Jakymiw A, Fujita DJ. Selected glimpses into the activation and function of Src kinase. Oncogene. 2000;19(49):5620–35. https://doi.org/10.1038/sj.onc.1203923.
Article
CAS
PubMed
Google Scholar
Hancock MH, Nelson JA. Modulation of the NFκb signalling pathway by human cytomegalovirus. Virology (Hyderabad). 2017;1(1).
Cherrington JM, Mocarski ES. Human cytomegalovirus ie1 transactivates the alpha promoter-enhancer via an 18-base-pair repeat element. J Virol. 1989;63(3):1435–40. https://doi.org/10.1128/jvi.63.3.1435-1440.1989.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sambucetti LC, Cherrington JM, Wilkinson GW, Mocarski ES. NF-kappa B activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J. 1989;8(13):4251–8.
Article
CAS
Google Scholar
Yurochko AD, Kowalik TF, Huong SM, Huang ES. Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J Virol. 1995;69(9):5391–400. https://doi.org/10.1128/jvi.69.9.5391-5400.1995.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boehme KW, Guerrero M, Compton T. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol. 2006;177(10):7094–102.
Article
CAS
Google Scholar
Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol. 2003;77(8):4588–96.
Article
CAS
Google Scholar
Mohammad AA, Costa H, Landázuri N, Lui WO, Hultenby K, Rahbar A, et al. Human cytomegalovirus microRNAs are carried by virions and dense bodies and are delivered to target cells. J Gen Virol. 2017;98(5):1058–72. https://doi.org/10.1099/jgv.0.000736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mlera L, Moy M, Maness K, Tran LN, Goodrum FD. The role of the human cytomegalovirus UL133-UL138 gene locus in latency and reactivation. Viruses. 2020. https://doi.org/10.3390/v12070714.
Article
PubMed
PubMed Central
Google Scholar
Petrucelli A, Rak M, Grainger L, Goodrum F. Characterization of a novel Golgi apparatus-localized latency determinant encoded by human cytomegalovirus. J Virol. 2009;83(11):5615–29. https://doi.org/10.1128/JVI.01989-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrucelli A, Umashankar M, Zagallo P, Rak M, Goodrum F. Interactions between proteins encoded within the human cytomegalovirus UL133-UL138 locus. J Virol. 2012;86(16):8653–62. https://doi.org/10.1128/JVI.00465-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Umashankar M, Petrucelli A, Cicchini L, Caposio P, Kreklywich CN, Rak M, et al. A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection. PLoS Pathog. 2011;7(12): e1002444. https://doi.org/10.1371/journal.ppat.1002444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buehler J, Zeltzer S, Reitsma J, Petrucelli A, Umashankar M, Rak M, et al. Opposing regulation of the EGF receptor: a molecular switch controlling cytomegalovirus latency and replication. PLoS Pathog. 2016;12(5): e1005655. https://doi.org/10.1371/journal.ppat.1005655.
Article
CAS
PubMed
PubMed Central
Google Scholar
Umashankar M, Rak M, Bughio F, Zagallo P, Caviness K, Goodrum FD. Antagonistic determinants controlling replicative and latent states of human cytomegalovirus infection. J Virol. 2014;88(11):5987–6002. https://doi.org/10.1128/JVI.03506-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikell I, Crawford LB, Hancock MH, Mitchell J, Buehler J, Goodrum F, et al. HCMV miR-US22 down-regulation of EGR-1 regulates CD34+ hematopoietic progenitor cell proliferation and viral reactivation. PLoS Pathog. 2019;15(11): e1007854. https://doi.org/10.1371/journal.ppat.1007854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu R, Baillie J, Sissons JGP, Sinclair JH. The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in nonpermissive cells. Nucleic Acids Res. 1994;22(13):2453–9. https://doi.org/10.1093/nar/22.13.2453.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinclair JH, Baillie J, Bryant LA, Taylor-Wiedeman JA, Sissons JG. Repression of human cytomegalovirus major immediate early gene expression in a monocytic cell line. J Gen Virol. 1992;73(Pt 2):433–5. https://doi.org/10.1099/0022-1317-73-2-433.
Article
CAS
PubMed
Google Scholar
Poole E, CarlandaSilva MC, Huang C, Perera M, Jackson S, Groves IJ, et al. A BMPR2/YY1 signaling axis is required for human cytomegalovirus latency in undifferentiated myeloid cells. MBio. 2021. https://doi.org/10.1128/mBio.00227-21.
Article
PubMed
PubMed Central
Google Scholar
Miyazawa K, Miyazono K. Regulation of TGF-beta family signaling by inhibitory smads. Cold Spring Harb Perspect Biol. 2017. https://doi.org/10.1101/cshperspect.a022095.
Article
PubMed
PubMed Central
Google Scholar
Hancock MH, Crawford LB, Pham AH, Mitchell J, Struthers HM, Yurochko AD, et al. Human cytomegalovirus miRNAs regulate TGF-beta to mediate myelosuppression while maintaining viral latency in CD34(+) hematopoietic progenitor cells. Cell Host Microbe. 2020;27(1):104–14. https://doi.org/10.1016/j.chom.2019.11.013.
Article
CAS
PubMed
Google Scholar
Mason GM, Poole E, Sissons JG, Wills MR, Sinclair JH. Human cytomegalovirus latency alters the cellular secretome, inducing cluster of differentiation (CD)4+ T-cell migration and suppression of effector function. Proc Natl Acad Sci USA. 2012;109(36):14538–43. https://doi.org/10.1073/pnas.1204836109.
Article
PubMed
PubMed Central
Google Scholar
Hancock MH, Mitchell J, Goodrum FD, Nelson JA. Human cytomegalovirus miR-US5–2 downregulation of GAB1 regulates cellular proliferation and UL138 expression through modulation of epidermal growth factor receptor signaling pathways. mSphere. 2020. https://doi.org/10.1128/mSphere.00582-20.
Article
PubMed
PubMed Central
Google Scholar
Russo MW, Sevetson BR, Milbrandt J. Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription. Proc Natl Acad Sci USA. 1995;92(15):6873–7. https://doi.org/10.1073/pnas.92.15.6873.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swirnoff AH, Apel ED, Svaren J, Sevetson BR, Zimonjic DB, Popescu NC, et al. Nab1, a corepressor of NGFI-A (Egr-1), contains an active transcriptional repression domain. Mol Cell Biol. 1998;18(1):512–24. https://doi.org/10.1128/MCB.18.1.512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keller MJ, Wheeler DG, Cooper E, Meier JL. Role of the human cytomegalovirus major immediate-early promoter’s 19-base-pair-repeat cyclic AMP-response element in acutely infected cells. J Virol. 2003;77(12):6666–75. https://doi.org/10.1128/jvi.77.12.6666-6675.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keller MJ, Wu AW, Andrews JI, McGonagill PW, Tibesar EE, Meier JL. Reversal of human cytomegalovirus major immediate-early enhancer/promoter silencing in quiescently infected cells via the cyclic AMP signaling pathway. J Virol. 2007;81(12):6669–81. https://doi.org/10.1128/JVI.01524-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casarosa P, Gruijthuijsen YK, Michel D, Beisser PS, Holl J, Fitzsimons CP, et al. Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J Biol Chem. 2003;278(50):50010–23. https://doi.org/10.1074/jbc.M306530200.
Article
CAS
PubMed
Google Scholar
Waldhoer M, Kledal TN, Farrell H, Schwartz TW. Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol. 2002;76(16):8161–8. https://doi.org/10.1128/jvi.76.16.8161-8168.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Connor CM, Murphy EA. A myeloid progenitor cell line capable of supporting human cytomegalovirus latency and reactivation, resulting in infectious progeny. J Virol. 2012;86(18):9854–65. https://doi.org/10.1128/JVI.01278-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Raman M, Chen L, Lee SF, Gilman AG, Cobb MH. TAO (thousand-and-one amino acid) protein kinases mediate signaling from carbachol to p38 mitogen-activated protein kinase and ternary complex factors. J Biol Chem. 2003;278(25):22278–83. https://doi.org/10.1074/jbc.M301173200.
Article
CAS
PubMed
Google Scholar
O’Connor CM, Nukui M, Gurova KV, Murphy EA. Inhibition of the FACT complex reduces transcription from the human cytomegalovirus major immediate early promoter in models of lytic and latent replication. J Virol. 2016;90(8):4249–53. https://doi.org/10.1128/JVI.02501-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elder EG, Krishna BA, Poole E, Perera M, Sinclair J. Regulation of host and viral promoters during human cytomegalovirus latency via US28 and CTCF. J Gen Virol. 2021. https://doi.org/10.1099/jgv.0.001609.
Article
PubMed
PubMed Central
Google Scholar
Elder EG, Krishna BA, Williamson J, Lim EY, Poole E, Sedikides GX, et al. Interferon-responsive genes are targeted during the establishment of human cytomegalovirus latency. MBio. 2019. https://doi.org/10.1128/mBio.02574-19.
Article
PubMed
PubMed Central
Google Scholar
Krishna BA, Spiess K, Poole EL, Lau B, Voigt S, Kledal TN, et al. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein. Nat Commun. 2017;8:14321. https://doi.org/10.1038/ncomms14321.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishna BA, Wass AB, Sridharan R, O’Connor CM. The requirement for US28 during cytomegalovirus latency is independent of US27 and US29 gene expression. Front Cell Infect Microbiol. 2020;10:186. https://doi.org/10.3389/fcimb.2020.00186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu SE, Miller WE. The HCMV US28 vGPCR induces potent Galphaq/PLC-beta signaling in monocytes leading to increased adhesion to endothelial cells. Virology. 2016;497:233–43. https://doi.org/10.1016/j.virol.2016.07.025.
Article
CAS
PubMed
Google Scholar
Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel-Encontre I. The AP-1 transcriptional complex: Local switch or remote command? Biochim Biophys Acta Rev Cancer. 2019;1872(1):11–23. https://doi.org/10.1016/j.bbcan.2019.04.003.
Article
CAS
PubMed
Google Scholar
Roche KL, Nukui M, Krishna BA, O’Connor CM, Murphy EA. Selective 4-thiouracil labeling of RNA transcripts within latently infected cells after infection with human cytomegalovirus expressing functional uracil phosphoribosyltransferase. J Virol. 2018;92(21):e00880-e918. https://doi.org/10.1128/JVI.00880-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishna BA, Wass AB, O’Connor CM. Activator protein-1 transactivation of the major immediate early locus is a determinant of cytomegalovirus reactivation from latency. Proc Natl Acad Sci USA. 2020. https://doi.org/10.1073/pnas.2009420117.
Article
PubMed
PubMed Central
Google Scholar
Rauwel B, Jang SM, Cassano M, Kapopoulou A, Barde I, Trono D. Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch. Elife. 2015;4: e06068. https://doi.org/10.7554/eLife.06068.
Article
PubMed Central
Google Scholar
Cervera C, Cofan F, Hernandez C, Soy D, Marcos MA, Sanclemente G, et al. Effect of mammalian target of rapamycin inhibitors on cytomegalovirus infection in kidney transplant recipients receiving polyclonal antilymphocyte globulins: a propensity score-matching analysis. Transpl Int. 2016;29(11):1216–25. https://doi.org/10.1111/tri.12848.
Article
CAS
PubMed
Google Scholar
Marty FM, Bryar J, Browne SK, Schwarzberg T, Ho VT, Bassett IV, et al. Sirolimus-based graft-versus-host disease prophylaxis protects against cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation: a cohort analysis. Blood. 2007;110(2):490–500. https://doi.org/10.1182/blood-2007-01-069294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozaki KS, Camara NO, Galante NZ, Camargo LF, Pacheco-Silva A. Decreased Cytomegalovirus infection after antilymphocyte therapy in sirolimus-treated renal transplant patients. Int Immunopharmacol. 2005;5(1):103–6. https://doi.org/10.1016/j.intimp.2004.09.008.
Article
CAS
PubMed
Google Scholar
Shendi AM, Hung RKY, Caplin B, Griffiths P, Harber M. The use of sirolimus in patients with recurrent cytomegalovirus infection after kidney transplantation: a retrospective case series analysis. Saudi J Kidney Dis Transpl. 2019;30(3):606–14. https://doi.org/10.4103/1319-2442.261333.
Article
PubMed
Google Scholar
Bak S, Tischer S, Dragon A, Ravens S, Pape L, Koenecke C, et al. Selective effects of mTOR inhibitor sirolimus on naive and CMV-specific T cells extending its applicable range beyond immunosuppression. Front Immunol. 2018;9:2953. https://doi.org/10.3389/fimmu.2018.02953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glover TE, Kew VG, Reeves MB. Rapamycin does not inhibit human cytomegalovirus reactivation from dendritic cells in vitro. J Gen Virol. 2014;95(Pt 10):2260–6. https://doi.org/10.1099/vir.0.066332-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altman AM, Mahmud J, Nikolovska-Coleska Z, Chan G. HCMV modulation of cellular PI3K/AKT/mTOR signaling: new opportunities for therapeutic intervention? Antiviral Res. 2019;163:82–90. https://doi.org/10.1016/j.antiviral.2019.01.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cojohari O, Mashmud J, Altman AM, Peppenelli MA, Miller MJ, Chan GC. Human cytomegalovirus mediates unique monocyte-to-macrophage differentiation through the PI3K/SHIP1/Akt signaling network. Viruses. 2020. https://doi.org/10.3390/v12060652.
Article
PubMed
PubMed Central
Google Scholar
Reeves MB, Compton T. Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol. 2011;85(23):12750–8. https://doi.org/10.1128/JVI.05878-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang MM, Kew VG, Jestice K, Wills MR, Reeves MB. Efficient human cytomegalovirus reactivation is maturation dependent in the Langerhans dendritic cell lineage and can be studied using a CD14+ experimental latency model. J Virol. 2012;86(16):8507–15. https://doi.org/10.1128/JVI.00598-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reeves MB. Cell signaling and cytomegalovirus reactivation: what do Src family kinases have to do with it? Biochem Soc Trans. 2020;48(2):667–75. https://doi.org/10.1042/BST20191110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kazi JU, Ronnstrand L. The role of SRC family kinases in FLT3 signaling. Int J Biochem Cell Biol. 2019;107:32–7. https://doi.org/10.1016/j.biocel.2018.12.007.
Article
CAS
PubMed
Google Scholar
Crawford LB, Kim JH, Collins-McMillen D, Lee BJ, Landais I, Held C, et al. Human cytomegalovirus encodes a novel FLT3 receptor ligand necessary for hematopoietic cell differentiation and viral reactivation. MBio. 2018. https://doi.org/10.1128/mBio.00682-18.
Article
PubMed
PubMed Central
Google Scholar
Patterson BK, Landay A, Andersson J, Brown C, Behbahani H, Jiyamapa D, et al. Repertoire of chemokine receptor expression in the female genital tract: implications for human immunodeficiency virus transmission. Am J Pathol. 1998;153(2):481–90. https://doi.org/10.1016/S0002-9440(10)65591-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beisser PS, Laurent L, Virelizier JL, Michelson S. Human cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J Virol. 2001;75(13):5949–57. https://doi.org/10.1128/JVI.75.13.5949-5957.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller WE, Zagorski WA, Brenneman JD, Avery D, Miller JL, O’Connor CM. US28 is a potent activator of phospholipase C during HCMV infection of clinically relevant target cells. PLoS ONE. 2012;7(11): e50524. https://doi.org/10.1371/journal.pone.0050524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawford LB, Caposio P, Kreklywich C, Pham AH, Hancock MH, Jones TA, et al. Human cytomegalovirus US28 ligand binding activity is required for latency in CD34(+) hematopoietic progenitor cells and humanized NSG mice. MBio. 2019. https://doi.org/10.1128/mBio.01889-19.
Article
PubMed
PubMed Central
Google Scholar
Elder E, Krishna B, Williamson J, Aslam Y, Farahi N, Wood A, et al. Monocytes latently infected with human cytomegalovirus evade neutrophil killing. Science. 2019;12:13–26. https://doi.org/10.1016/j.isci.2019.01.007.
Article
CAS
Google Scholar
Stern JL, Slobedman B. Human cytomegalovirus latent infection of myeloid cells directs monocyte migration by up-regulating monocyte chemotactic protein-1. J Immunol. 2008;180(10):6577–85. https://doi.org/10.4049/jimmunol.180.10.6577.
Article
CAS
PubMed
Google Scholar
Cheng S, Caviness K, Buehler J, Smithey M, Nikolich-Zugich J, Goodrum F. Transcriptome-wide characterization of human cytomegalovirus in natural infection and experimental latency. Proc Natl Acad Sci USA. 2017;114(49):E10586–95. https://doi.org/10.1073/pnas.1710522114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poole E, Walther A, Raven K, Benedict CA, Mason GM, Sinclair J. The myeloid transcription factor GATA-2 regulates the viral UL144 gene during human cytomegalovirus latency in an isolate-specific manner. J Virol. 2013;87(8):4261–71. https://doi.org/10.1128/JVI.03497-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
McSharry BP, Avdic S, Slobedman B. Human cytomegalovirus encoded homologs of cytokines, chemokines and their receptors: roles in immunomodulation. Viruses. 2012;4(11):2448–70. https://doi.org/10.3390/v4112448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diggins NL, Skalsky RL, Hancock MH. Regulation of latency and reactivation by human cytomegalovirus miRNAs. Pathogens. 2021. https://doi.org/10.3390/pathogens10020200.
Article
PubMed
PubMed Central
Google Scholar
Diggins NL, Crawford LB, Hancock MH, Mitchell J, Nelson JA. Human cytomegalovirus miR-US25–1 targets the GTPase RhoA to inhibit CD34(+) hematopoietic progenitor cell proliferation to maintain the latent viral genome. MBio. 2021. https://doi.org/10.1128/mBio.00621-21.
Article
PubMed
PubMed Central
Google Scholar
Shahbazi R, Baradaran B, Khordadmehr M, Safaei S, Baghbanzadeh A, Jigari F, et al. Targeting ROCK signaling in health, malignant and non-malignant diseases. Immunol Lett. 2020;219:15–26. https://doi.org/10.1016/j.imlet.2019.12.012.
Article
CAS
PubMed
Google Scholar
Bhowmick NA, Ghiassi M, Aakre M, Brown K, Singh V, Moses HL. TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci USA. 2003;100(26):15548–53. https://doi.org/10.1073/pnas.2536483100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001;12(1):27–36. https://doi.org/10.1091/mbc.12.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Crawford M, Day RM, Briones VR, Leader JE, Jose PA, et al. RhoA modulates Smad signaling during transforming growth factor-beta-induced smooth muscle differentiation. J Biol Chem. 2006;281(3):1765–70. https://doi.org/10.1074/jbc.M507771200.
Article
CAS
PubMed
Google Scholar
Edlund S, Landstrom M, Heldin CH, Aspenstrom P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell. 2002;13(3):902–14. https://doi.org/10.1091/mbc.01-08-0398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen X, Li J, Hu PP, Waddell D, Zhang J, Wang XF. The activity of guanine exchange factor NET1 is essential for transforming growth factor-beta-mediated stress fiber formation. J Biol Chem. 2001;276(18):15362–8. https://doi.org/10.1074/jbc.M009534200.
Article
CAS
PubMed
Google Scholar
Vardouli L, Moustakas A, Stournaras C. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem. 2005;280(12):11448–57. https://doi.org/10.1074/jbc.M402651200.
Article
CAS
PubMed
Google Scholar
Lau B, Poole E, Krishna B, Sellart I, Wills MR, Murphy E, et al. The expression of human cytomegalovirus microRNA MiR-UL148D during latent infection in primary myeloid cells inhibits activin A-triggered secretion of IL-6. Sci Rep. 2016;6:31205. https://doi.org/10.1038/srep31205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan C, Zhu D, Wang Y, Li L, Li D, Liu F, et al. Human cytomegalovirus miR-UL148D facilitates latent viral infection by targeting host cell immediate early response gene 5. PLoS Pathog. 2016;12(11): e1006007. https://doi.org/10.1371/journal.ppat.1006007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hancock MH, Crawford LB, Perez W, Struthers HM, Mitchell J, Caposio P. Human cytomegalovirus UL7, miR-US5-1, and miR-UL112-3p inactivation of FOXO3a protects CD34(+) hematopoietic progenitor cells from apoptosis. mSphere. 2021. https://doi.org/10.1128/mSphere.00986-20.
Article
PubMed
PubMed Central
Google Scholar
Hale AE, Collins-McMillen D, Lenarcic EM, Igarashi S, Kamil JP, Goodrum F, et al. FOXO transcription factors activate alternative major immediate early promoters to induce human cytomegalovirus reactivation. Proc Natl Acad Sci USA. 2020;117(31):18764–70. https://doi.org/10.1073/pnas.2002651117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins-McMillen D, Rak M, Buehler JC, Igarashi-Hayes S, Kamil JP, Moorman NJ, et al. Alternative promoters drive human cytomegalovirus reactivation from latency. Proc Natl Acad Sci USA. 2019;116(35):17492–7. https://doi.org/10.1073/pnas.1900783116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau B, Poole E, Van Damme E, Bunkens L, Sowash M, King H, et al. Human cytomegalovirus miR-UL112-1 promotes the down-regulation of viral immediate early-gene expression during latency to prevent T-cell recognition of latently infected cells. J Gen Virol. 2016;97(9):2387–98. https://doi.org/10.1099/jgv.0.000546.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ. Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA. 2008;105(14):5453–8. https://doi.org/10.1073/pnas.0711910105.
Article
PubMed
PubMed Central
Google Scholar
O’Connor CM, Vanicek J, Murphy EA. Host microRNA regulation of human cytomegalovirus immediate early protein translation promotes viral latency. J Virol. 2014;88(10):5524–32. https://doi.org/10.1128/JVI.00481-14.
Article
CAS
PubMed
PubMed Central
Google Scholar