Organization WH: WHO expert consultation on rabies: second report. World Health Organization; 2013.
Lafon M. Subversive neuroinvasive strategy of rabies virus. Arch Virol Suppl. 2004:149–159.
Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF. Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol. 2005;79:12554–65.
Article
CAS
Google Scholar
Doll DN, Barr TL, Simpkins JW. Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 2014;5:294.
PubMed
PubMed Central
Google Scholar
Fu Z, Gnanadurai CW, Huang Y. Critical roles of chemokines and cytokines in antiviral innate immune responses during rabies virus infection. Front Agric Sci Eng . 2017;4:260.
Article
Google Scholar
Knobel DL, Cleaveland S, Coleman PG, Fèvre EM, Meltzer MI, Miranda MEG, Shaw A, Zinsstag J, Meslin F-X. Re-evaluating the burden of rabies in Africa and Asia. Bull World Health Organ. 2005;83:360–8.
PubMed
PubMed Central
Google Scholar
Suja MS, Mahadevan A, Madhusudana SN, Shankar SK. Role of apoptosis in rabies viral encephalitis: a comparative study in mice, canine, and human brain with a review of literature. Patholog Res Int. 2011;2011:374286.
CAS
PubMed
PubMed Central
Google Scholar
Chai Q, He WQ, Zhou M, Lu H, Fu ZF. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol. 2014;88:4698–710.
Article
Google Scholar
Zhao L, Toriumi H, Kuang Y, Chen H, Fu ZF. The roles of chemokines in rabies virus infection: overexpression may not always be beneficial. J Virol. 2009;83:11808–18.
Article
CAS
Google Scholar
Chan ED, Morris KR, Belisle JT, Hill P, Remigio LK, Brennan PJ, Riches DW. Induction of inducible nitric oxide synthase-no by lipoarabinomannan of mycobacterium tuberculosis Is Mediated by MEK1-ERK, MKK7-JNK, and NF-κB Signaling Pathways. Infect Immun. 2001, 69.
Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res. 2018;253:48–61.
Article
CAS
Google Scholar
Nakamichi K, Saiki M, Sawada M, Takayama-Ito M, Yamamuro Y, Morimoto K, Kurane I. Rabies virus-induced activation of mitogen-activated protein kinase and NF-κB signaling pathways regulates expression of CXC and CC chemokine ligands in microglia. J Virol. 2005;79:11801–12.
Article
CAS
Google Scholar
Ming P, Du J, Tang Q, Yan J, Nadin-Davis SA, Li H, Tao X, Huang Y, Hu R, Liang G. Molecular characterization of the complete genome of a street rabies virus isolated in China. Virus Res. 2009;143:6–14.
Article
CAS
Google Scholar
Yin JF, Ding YL, Huang Y, Tao XY, Li H, Yu PC, Shen XX, Jiao WT, Liang GD, Tang Q, Wang FL. Comparative analysis of the pathogenic mechanisms of street rabies virus strains with different virulence levels. Biomed Environ Sci. 2014;27:749–62.
CAS
PubMed
Google Scholar
Park CH, Kondo M, Inoue S, Noguchi A, Oyamada T, Yoshikawa H, Yamada A. The histopathogenesis of paralytic rabies in six-week-old C57BL/6J mice following inoculation of the CVS-11 strain into the right triceps surae muscle. J Vet Med Sci. 2006;68:589–95.
Article
Google Scholar
Tao XY, Li ML, Wang Q, Baima C, Hong M, Li W, Wu YB, Li YR, Zhao YM, Rayner S, Zhu WY. The reemergence of human rabies and emergence of an Indian subcontinent lineage in Tibet China. PLoS Negl Trop Dis. 2019;13:e0007036.
Article
Google Scholar
Huang Y, Tang Q, Rayner S, Gong K, Song B, Liang GD. Pathogenicity of rabies viruses isolated in China: two fixed strains and a street strain. Biomed Environ Sci. 2013;26:552–61.
CAS
PubMed
Google Scholar
Huang Y, Jiao S, Tao X, Tang Q, Jiao W, Xiao J, Xu X, Zhang Y, Liang G, Wang H. Met-CCL5 represents an immunotherapy strategy to ameliorate rabies virus infection. J Neuroinflammation. 2014a;11:146.
Article
Google Scholar
Huang Y, Jiao S, Tao X, Tang Q, Jiao W, Xiao J, Xu X, Zhang Y, Liang G, Wang H. Met-CCL5 represents an immunotherapy strategy to ameliorate rabies virus infection. J Neuroinflammation. 2014b;11:146.
Article
Google Scholar
Lindborg JA, Niemi JP, Howarth MA, Liu KW, Moore CZ, Mahajan D, Zigmond RE. Molecular and cellular identification of the immune response in peripheral ganglia following nerve injury. J Neuroinflammation. 2018;15:192.
Article
Google Scholar
Raghu C, Ekena J, Cullen JM, Webb CB, Trepanier LA. Evaluation of potential serum biomarkers of hepatic fibrosis and necroinflammatory activity in dogs with liver disease. J Vet Intern Med. 2018;32:1009–18.
Article
Google Scholar
Menezes-Souza D, Guerra-Sa R, Carneiro CM, Vitoriano-Souza J, Giunchetti RC, Teixeira-Carvalho A, Silveira-Lemos D, Oliveira GC, Correa-Oliveira R, Reis AB. Higher expression of CCL2, CCL4, CCL5, CCL21, and CXCL8 chemokines in the skin associated with parasite density in canine visceral leishmaniasis. PLoS Negl Trop Dis. 2012;6:e1566.
Article
CAS
Google Scholar
Karlsson I, Hagman R, Johannisson A, Wang L, Sodersten F, Wernersson S. Multiplex cytokine analyses in dogs with pyometra suggest involvement of KC-like chemokine in canine bacterial sepsis. Vet Immunol Immunopathol. 2016;170:41–6.
Article
CAS
Google Scholar
Tsuchida S, Kagi A, Takahashi T. Characterization of cDNA and genomic sequences encoding a canine chemokine receptor, CXCR4 and its ligand CXCL12. Vet Immunol Immunopathol. 2007;116:219–25.
Article
CAS
Google Scholar
Regan DP, Escaffi A, Coy J, Kurihara J, Dow SW. Role of monocyte recruitment in hemangiosarcoma metastasis in dogs. Vet Comp Oncol. 2017;15:1309–22.
Article
CAS
Google Scholar
Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim et Biophys Acta (BBA)-Mol Cell Res. 2011;1813:1619–33.
Article
CAS
Google Scholar
Cushing SD, Fogelman AM. Monocytes may amplify their recruitment into inflammatory lesions by inducing monocyte chemotactic protein. Arterioscler Thromb. 1992;12:78–82.
Article
CAS
Google Scholar
Murakami K, Maeda S, Yonezawa T, Matsuki N. CC chemokine ligand 2 and CXC chemokine ligand 8 as neutrophil chemoattractant factors in canine idiopathic polyarthritis. Vet Immunol Immunopathol. 2016;182:52–8.
Article
CAS
Google Scholar
Lin TY, London CA. A functional comparison of canine and murine bone marrow derived cultured mast cells. Vet Immunol Immunopathol. 2006;114:320–34.
Article
CAS
Google Scholar
Taylor AR, Welsh CJ, Young C, Spoor E, Kerwin SC, Griffin JF, Levine GJ, Cohen ND, Levine JM. Cerebrospinal fluid inflammatory cytokines and chemokines in naturally occurring canine spinal cord injury. J Neurotrauma. 2014;31:1561–9.
Article
Google Scholar
Borghys H, Van Broeck B, Dhuyvetter D, Jacobs T, de Waepenaert K, Erkens T, Brooks M, Thevarkunnel S, Araujo JA. Young to middle-aged dogs with high amyloid-beta levels in cerebrospinal fluid are impaired on learning in standard cognition tests. J Alzheimers Dis. 2017;56:763–74.
Article
CAS
Google Scholar
Ichiki T, Huntley BK, Harty GJ, Sangaralingham SJ, Burnett JC, Jr. Early activation of deleterious molecular pathways in the kidney in experimental heart failure with atrial remodeling. Physiol Rep 2017, 5.
Shi W, Hou X, Li X, Peng H, Shi M, Jiang Q, Liu X, Ji Y, Yao Y, He C. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells. Braz J Infect Dis. 2013;17:410–7.
Article
Google Scholar
Zhang G, Wang H, Mahmood F, Fu ZF. Rabies virus glycoprotein is an important determinant for the induction of innate immune responses and the pathogenic mechanisms. Vet Microbiol. 2013;162:601–13.
Article
CAS
Google Scholar
Medders KE, Kaul M. Mitogen-activated protein kinase p38 in HIV infection and associated brain injury. J Neuroimmune Pharmacol. 2011;6:202–15.
Article
Google Scholar
Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–83.
Article
CAS
Google Scholar
Kuang Y, Lackay SN, Zhao L, Fu ZF. Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Res. 2009;144:18–26.
Article
CAS
Google Scholar