Wu Y, Lin J, Yang S, Xie Y, Wang M, Chen X, Zhu Y, Luo L, Shi W. The molecular characteristics of avian influenza viruses (H9N2) derived from air samples in live poultry markets. Infect Genet Evol. 2018;60:191–6.
Article
CAS
Google Scholar
Zeng X, Liu M, Zhang H, Wu J, Zhao X, Chen W, Yang L, He F, Fan G, Wang D, et al. Avian influenza H9N2 virus isolated from air samples in LPMs in Jiangxi, China. Virol J. 2017;14(1):136.
Article
Google Scholar
Liu Q, Chen H, Huang J, Chen Y, Gu M, Wang X, Hu S, Liu X, Liu X. A nonpathogenic duck-origin H9N2 influenza a virus adapts to high pathogenicity in mice. Arch Virol. 2014;159(9):2243–52.
Article
CAS
Google Scholar
Zhu Y, Hu S, Bai T, Yang L, Zhao X, Zhu W, Huang Y, Deng Z, Zhang H, Bai Z, et al. Phylogenetic and antigenic characterization of reassortant H9N2 avian influenza viruses isolated from wild waterfowl in the east Dongting Lake wetland in 2011–2012. Virol J. 2014;11:77.
Article
CAS
Google Scholar
Lu JH, Liu XF, Shao WX, Liu YL, Wei DP, Liu HQ. Phylogenetic analysis of eight genes of H9N2 subtype influenza virus: a mainland China strain possessing early isolates' genes that have been circulating. Virus Genes. 2005;31(2):163–9.
Article
CAS
Google Scholar
Xia J, Cui JQ, He X, Liu YY, Yao KC, Cao SJ, Han XF, Huang Y. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013-2016. PLoS One. 2017;12(2):e0171564.
Article
Google Scholar
Li Y, Liu M, Sun Q, Zhang H, Zhang H, Jiang S, Liu S, Huang Y. Genotypic evolution and epidemiological characteristics of H9N2 influenza virus in Shandong Province, China. Poult Sci. 2019;98(9):3488–95.
Article
CAS
Google Scholar
Lam TT, Wang J, Shen Y, Zhou B, Duan L, Cheung CL, Ma C, Lycett SJ, Leung CY, Chen X, et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature. 2013;502(7470):241–4.
Article
CAS
Google Scholar
Chen E, Chen Y, Fu L, Chen Z, Gong Z, Mao H, Wang D, Ni MY, Wu P, Yu Z, et al. Human infection with avian influenza A(H7N9) virus re-emerges in China in winter 2013. Euro Surveill. 2013;18(43):20616.
Article
Google Scholar
Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y, Fan G, Yang F, Li X, Zhou J, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza a H10N8 virus infection: a descriptive study. Lancet. 2014;383(9918):714–21.
Article
Google Scholar
Li X, Shi J, Guo J, Deng G, Zhang Q, Wang J, He X, Wang K, Chen J, Li Y, Fan J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog. 2014;10(11):e1004508.
Article
Google Scholar
Matrosovich MN, Krauss S, Webster RG. H9N2 influenza a viruses from poultry in Asia have human virus-like receptor specificity. Virology. 2001;281(2):156–62.
Article
CAS
Google Scholar
Ha Y, Stevens DJ, Skehel JJ, Wiley DC. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A. 2001;98(20):11181–6.
Article
CAS
Google Scholar
Wang J, Wu M, Hong W, Fan X, Chen R, Zheng Z, Zeng Y, Huang R, Zhang Y, Lam TT, Smith DK, Zhu H, Guan Y. Infectivity and transmissibility of avian H9N2 influenza viruses in pigs. J Virol. 2016;90(7):3506–14.
Article
CAS
Google Scholar
Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V. The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell. 2004;15(12):5369–82.
Article
CAS
Google Scholar
Harrison SC. Viral membrane fusion. Virology. 2015;479-480:498–507.
Article
CAS
Google Scholar
Liu Q, Liu Y, Yang J, Huang X, Han K, Zhao D, Bi K, Li Y. Two genetically similar H9N2 influenza a viruses show different pathogenicity in mice. Front Microbiol. 2016;7:1737.
PubMed
PubMed Central
Google Scholar
Liu Q, Huang J, Chen Y, Chen H, Li Q, He L, Hao X, Liu J, Gu M, Hu J, et al. Virulence determinants in the PB2 gene of a mouse-adapted H9N2 virus. J Virol. 2015;89(1):877–82.
Article
Google Scholar
Eriksson P, Lindskog C, Lorente-Leal V, Waldenström J, González-Acuna D, Järhult JD, Lundkvist Å, Olsen B, Jourdain E, Ellström P. Attachment patterns of human and avian influenza viruses to trachea and Colon of 26 bird species - support for the community concept. Front Microbiol. 2019;10:815.
Article
Google Scholar
Eriksson P, Lindskog C, Engholm E, Blixt O, Waldenström J, Munster V, Lundkvist Å, Olsen B, Jourdain E, Ellström P. Characterization of avian influenza virus attachment patterns to human and pig tissues. Sci Rep. 2018;8(1):12215.
Article
Google Scholar
Kim M, Yu JE, Lee JH, Chang BJ, Song CS, Lee B, Paik DJ, Nahm SS. Comparative analyses of influenza virus receptor distribution in the human and mouse brains. J Chem Neuroanat. 2013;52:49–57.
Article
CAS
Google Scholar
Liu S, Ji K, Chen J, Tai D, Jiang W, Hou G, Chen J, Li J, Huang B. Panorama phylogenetic diversity and distribution of type a influenza virus. PLoS One. 2009;4(3):e5022.
Article
Google Scholar
Feng XL, Zheng Y, Zong MM, Hao SS, Zhou GF, Cao RB, Chen PY, Liu TQ. The immunomodulatory functions and molecular mechanism of a new bursal heptapeptide (BP7) in immune responses and immature B cells. Vet Res. 2019;50(1):64. https://doi.org/10.1186/s13567-019-0682-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Liu J. H9N2 influenza virus in China: a cause of concern. Protein Cell. 2015;6(1):18–25.
Article
CAS
Google Scholar
Xu KM, Smith GJ, Bahl J, Duan L, Tai H, Vijaykrishna D, Wang J, Zhang JX, Li KS, Fan XH, Webster RG, Chen H, Peiris JS, Guan Y. The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J Virol. 2007;81(19):10389–401.
Article
CAS
Google Scholar
Perez DR, Lim W, Seiler JP, Yi G, Peiris M, Shortridge KF, Webster RG. Role of quail in the interspecies transmission of H9 influenza a viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. J Virol. 2003;77(5):3148–56.
Article
CAS
Google Scholar
Fay N, Nelly P. The intermediate filament network protein, vimentin, is required for parvoviral infection. Virology. 2013;444(1–2):181–90.
Article
CAS
Google Scholar
Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V. Vimentin interacts with heterogeneous nuclear ribonucleoproteins and dengue nonstructuralprotein 1 and is important for viral replication and release. Mol BioSyst. 2010;6(5):795–806.
Article
CAS
Google Scholar
Ros C, Burckhardt CJ, Kempf C. Cytoplasmic trafficking of minute virus of mice: low-pH requirement, routing to late endosomes, and proteasome interaction. J Virol. 2002;76(24):12634–45.
Article
CAS
Google Scholar
Meckes DG Jr, Menaker NF, Raab-Traub N. Epstein-Barr virus LMP1 modulates lipid raft microdomains and the vimentin cytoskeleton for signal transduction and transformation. J Virol. 2013;87(3):1301–11.
Article
CAS
Google Scholar
Gladue DP, O'Donnell V, Baker-Branstetter R, Holinka LG, Pacheco JM, Fernández Sainz I, Lu Z, Ambroggio X, Rodriguez L, Borca MV. Foot-and-mouth disease virus modulates cellular vimentin for virus survival. J Virol. 2013;87(12):6794–803.
Article
CAS
Google Scholar
Lei S, Tian YP, Xiao WD, Li S, Rao XC, Zhang JL, Yang J, Hu XM, Chen W. ROCK is involved in vimentin phosphorylation and rearrangement induced by dengue virus. Cell Biochem Biophys. 2013;67(3):1333–42.
Article
CAS
Google Scholar
Teo CS, Chu JJ. Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein. J Virol. 2014;88(4):1897–913.
Article
Google Scholar
Chang XB, Yang YQ, Gao JC, Zhao K, Guo JC, Ye C, Jiang CG, Tian ZJ, Cai XH, Tong GZ, An TQ. Annexin A2 binds to vimentin and contributes to porcine reproductive and respiratory syndrome virus multiplication. Vet Res. 2018;49(1):75.
Article
Google Scholar