Xie Y, Wu L, Wang M, Cheng A, Yang Q, Wu Y, et al. Alpha-Herpesvirus thymidine kinase genes mediate viral virulence and are potential therapeutic targets. Front Microbiol. 2019;10:941.
Article
PubMed
PubMed Central
Google Scholar
Osterrieder K. Cell biology of herpes Viruse. Germany: Springer International Publishing; 2017. p. 1–18.
Book
Google Scholar
Agut H, Bonnafous P, Gautheret-Dejean A. Update on infections with human herpesviruses 6A, 6B, and 7. Med Mal Infect. 2017;47:83–91.
Article
PubMed
CAS
Google Scholar
Foulon T. Herpesviridae: classification and structure in 1991. Comp Immunol Microbiol Infect Dis. 1992;1:13–29.
Article
Google Scholar
Suazo PA, Ibanez FJ, Retamal-Diaz AR, Paz-Fiblas MV, Bueno SM, Kalergis AM, et al. Evasion of early antiviral responses by herpes simplex viruses. Mediat Inflamm. 2015;2015:593757.
Article
CAS
Google Scholar
Read GS. Virus-encoded endonucleases: expected and novel functions. Wiley Interdiscip Rev RNA. 2013;4:693–708.
Article
PubMed
CAS
Google Scholar
Glaunsinger B, Ganem D. Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Mol Cell. 2004;13:0–723.
Article
CAS
Google Scholar
Covarrubias S, Richner JM, Clyde K, Lee YJ, Glaunsinger BA. Host shutoff is a conserved phenotype of gammaherpesvirus infection and is orchestrated exclusively from the cytoplasm. J Virol. 2009;83:9554–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression. Virus Res. 2015;202:89–100.
Article
PubMed
CAS
Google Scholar
Levene RE, Gaglia MM. Host shutoff in influenza a virus: many means to an end. Viruses. 2018;10:475.
Article
PubMed Central
CAS
Google Scholar
Rivas HG, Schmaling SK, Gaglia MM. Shutoff of host gene expression in influenza a virus and Herpesviruses: similar mechanisms and common themes. Viruses. 2016;8:102.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gaglia MM, Covarrubias S, Wong W, Glaunsinger BA. A common strategy for host RNA degradation by divergent viruses. J Virol. 2012;86:9527–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hardwicke MA, Sandri-Goldin RM. The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol. 1994;68:4797–810.
Article
PubMed
PubMed Central
CAS
Google Scholar
Patel V, Dahlroth SL, Rajakannan V, Ho HT, Cornvik T, Nordlund P. Structure of the C-terminal domain of the multifunctional ICP27 protein from herpes simplex virus 1. J Virol. 2015;89:8828–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu H, Cong J-P, Mamtora G, Gingeras T, Shenk T. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc Natl Acad Sci. 1998;95:14470–5.
Article
PubMed
CAS
Google Scholar
Smiley JR. Herpes simplex virus Virion host shutoff protein: immune evasion mediated by a viral RNase? J Virol. 2004;78:1063–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taddeo B, Roizman B. The virion host shutoff protein (UL41) of herpes simplex virus 1 is an endoribonuclease with a substrate specificity similar to that of RNase a. J Virol. 2006;80:9341–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin HW, Hsu WL, Chang YY, Jan MS, Wong ML, Chang TJ. Role of the UL41 protein of pseudorabies virus in host shutoff, pathogenesis and induction of TNF-α expression. J Vet Med Sci. 2010;72:1179–87.
Article
PubMed
CAS
Google Scholar
Desloges N, Rahaus M, Wolff MH. The varicella-zoster virus-mediated delayed host shutoff: open reading frame 17 has no major function, whereas immediate-early 63 protein represses heterologous gene expression. Microbes Infect. 2005;7:1519–29.
Article
PubMed
CAS
Google Scholar
Sato H, Callanan LD, Pesnicak L, Krogmann T, Cohen JI. Varicella-zoster virus (VZV) ORF17 protein induces RNA cleavage and is critical for replication of VZV at 37 degrees C but not 33 degrees C. J Virol. 2002;76:11012–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dauber B, Saffran HA, Smiley JR. The herpes simplex virus host shutoff (vhs) RNase limits accumulation of double stranded RNA in infected cells: evidence for accelerated decay of duplex RNA. PLoS Pathog. 2019;15:e1008111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sandri-Goldin RM. The many roles of the highly interactive HSV protein ICP27, a key regulator of infection. Future Microbiol. 2011;6:1261–77.
Article
PubMed
CAS
Google Scholar
Tang S, Patel A, Krause PR. Hidden regulation of herpes simplex virus 1 pre-mRNA splicing and polyadenylation by virally encoded immediate early gene ICP27. PLoS Pathog. 2019;15:e1007884.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tunnicliffe RB, Hu WK, Wu MY, Levy C, Mould AP, McKenzie EA, et al. Molecular mechanism of SR protein kinase 1 inhibition by the herpes virus protein ICP27. mBio. 2019;10:e02551–19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tang S, Patel A, Krause PR. Herpes simplex virus ICP27 regulates alternative pre-mRNA polyadenylation and splicing in a sequence-dependent manner. Proc Natl Acad Sci U S A. 2016;113:12256.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rutkowski AJ, Erhard F, L'Hernault A, Bonfert T, Schilhabel M, Crump C, et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun. 2015;6:7126.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Hennig T, Whisnant AW, Erhard F, Prusty BK, Friedel CC, et al. Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27. Nat Commun. 2020;11:293.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rowe M, Glaunsinger B, Leeuwen DV, Zuo J, Sweetman D, Ganem D, et al. Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A. 2007;104:3366–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gaglia MM, Rycroft CH, Glaunsinger BA. Transcriptome-wide cleavage site mapping on cellular mRNAs reveals features underlying sequence-specific cleavage by the viral Ribonuclease SOX. PLoS Pathog. 2015;11:e1005305.
Article
PubMed
PubMed Central
CAS
Google Scholar
Covarrubias S, Gaglia MM, Kumar GR, Wong W, Jackson AO, Glaunsinger BA. Coordinated destruction of cellular messages in translation complexes by the gammaherpesvirus host shutoff factor and the mammalian exonuclease Xrn1. PLoS Pathog. 2011;7:e1002339.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glaunsinger B, Chavez L, Ganem D. The exonuclease and host shutoff functions of the SOX protein of Kaposi\s sarcoma-associated Herpesvirus are genetically separable. J Virol. 2005;79:7396–401.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee YJ, Glaunsinger BA. Aberrant herpesvirus-induced polyadenylation correlates with cellular messenger RNA destruction. PLoS Biol. 2009;7:e1000107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abernathy E, Clyde K, Yeasmin R, Krug LT, Burlingame A, Coscoy L, et al. Gammaherpesviral gene expression and virion composition are broadly controlled by accelerated mRNA degradation. PLoS Pathog. 2014;10:e1003882.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abernathy E, Glaunsinger B. Emerging roles for RNA degradation in viral replication and antiviral defense. Virology. 2015;479-480:600–8.
Article
PubMed
CAS
Google Scholar
Feederle R, Bannert H, Lips H, Muller-Lantzsch N, Delecluse HJ. The Epstein-Barr virus alkaline exonuclease BGLF5 serves pleiotropic functions in virus replication. J Virol. 2009;83:4952–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bagneris C, Briggs LC, Savva R, Ebrahimi B, Barrett TE. Crystal structure of a KSHV-SOX-DNA complex: insights into the molecular mechanisms underlying DNase activity and host shutoff. Nucleic Acids Res. 2011;39:5744–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muller M, Hutin S, Marigold O, Li KH, Burlingame A, Glaunsinger BA. A ribonucleoprotein complex protects the interleukin-6 mRNA from degradation by distinct herpesviral endonucleases. PLoS Pathog. 2015;11:e1004899.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rodriguez W, Srivastav K, Muller M. C19ORF66 broadly escapes virus-induced endonuclease cleavage and restricts Kaposi's sarcoma-associated Herpesvirus. J Virol. 93:2019, e00373–e02019.
Muller M, Glaunsinger BA. Nuclease escape elements protect messenger RNA against cleavage by multiple viral endonucleases. PLoS Pathog. 2017;13:e1006593.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clyde K, Glaunsinger BA. Deep sequencing reveals direct targets of gammaherpesvirus-induced mRNA decay and suggests that multiple mechanisms govern cellular transcript escape. PLoS One. 2011;6:e19655.
Article
PubMed
PubMed Central
CAS
Google Scholar
Esclatine A, Taddeo B, Evans L, Roizman B. The herpes simplex virus 1 UL41 gene-dependent destabilization of cellular RNAs is selective and may be sequence-specific. Proc Natl Acad Sci U S A. 2004;101:3603–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Onomoto K, Yoneyama M, Fung G, Kato H, Fujita T. Antiviral innate immunity and stress granule responses. Trends Immunol. 2014;35:420–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sciortino MT, Parisi T, Siracusano G, Mastino A, Taddeo B, Roizman B. The virion host shutoff RNase plays a key role in blocking the activation of protein kinase R in cells infected with herpes simplex virus 1. J Virol. 2013;87:3271–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pasieka TJ, Lu B, Crosby SD, Wylie KM, Morrison LA, Alexander DE, et al. Herpes simplex virus virion host shutoff attenuates establishment of the antiviral state. J Virol. 2008;82:5527–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharma NR, Majerciak V, Kruhlak MJ, Zheng ZM. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation. PLoS Pathog. 2017;13:e1006677.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng P, Everly DN Jr, Read GS. mRNA decay during herpesvirus infections: interaction between a putative viral nuclease and a cellular translation factor. J Virol. 2001;75:10272–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doepker RC, Hsu WL, Saffran HA, Smiley JR. Herpes simplex virus Virion host shutoff protein is stimulated by translation initiation factors eIF4B and eIF4H. J Virol. 2004;78:4684–99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sarma N, Agarwal D, Shiflett LA, Read GS. Small interfering RNAs that deplete the cellular translation factor eIF4H impede mRNA degradation by the virion host shutoff protein of herpes simplex virus. J Virol. 2008;82:6600–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Teo CSH, O'Hare P. A bimodal switch in global protein translation coupled to eIF4H relocalisation during advancing cell-cell transmission of herpes simplex virus. PLoS Pathog. 2018;14:e1007196.
Article
PubMed
PubMed Central
CAS
Google Scholar
Page HG, Read GS. The virion host shutoff endonuclease (UL41) of herpes simplex virus interacts with the cellular cap-binding complex eIF4F. J Virol. 2010;84:6886–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng P, Everly DN Jr, Read GS. mRNA decay during herpes simplex virus (HSV) infections: protein-protein interactions involving the HSV virion host shutoff protein and translation factors eIF4H and eIF4A. J Virol. 2005;79:9651–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shu M, Taddeo B, Roizman B. Tristetraprolin recruits the herpes simplex Virion host shutoff RNase to AU-rich elements in stress response mRNAs to enable their cleavage. J Virol. 2015;89:5643–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saffran HA, Read GS, Smiley JR. Evidence for translational regulation by the herpes simplex virus virion host shutoff protein. J Virol. 2010;84:6041–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wigington CP, Williams KR, Meers MP, Bassell GJ, Corbett AH. Poly(a) RNA-binding proteins and polyadenosine RNA: new members and novel functions. Wiley Interdiscip Rev RNA. 2014;5:601–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dobrikova E, Shveygert M, Walters R, Gromeier M. Herpes simplex virus proteins ICP27 and UL47 associate with polyadenylate-binding protein and control its subcellular distribution. J Virol. 2010;84:270–9.
Article
PubMed
CAS
Google Scholar
Salaun C, MacDonald AI, Larralde O, Howard L, Lochtie K, Burgess HM, et al. Poly(a)-binding protein 1 partially relocalizes to the nucleus during herpes simplex virus type 1 infection in an ICP27-independent manner and does not inhibit virus replication. J Virol. 84:2010, 8539–8548.
Kumar GR, Glaunsinger BA. Nuclear import of cytoplasmic poly(a) binding protein restricts gene expression via hyperadenylation and nuclear retention of mRNA. Mol Cell Biol. 2010;30:4996–5008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rwp S, Anderson RC, Larralde O, et al. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proc Natl Acad Sci U S A. 2017;114:6310–5.
Article
CAS
Google Scholar
Massimelli MJ, Majerciak V, Kruhlak M, Zheng ZM. Interplay between polyadenylate-binding protein 1 and Kaposi's sarcoma-associated herpesvirus ORF57 in accumulation of polyadenylated nuclear RNA, a viral long noncoding RNA. J Virol. 2013;87:243–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Horst D, Burmeister WP, Boer IG, van Leeuwen D, Buisson M, Gorbalenya AE, et al. The "bridge" in the Epstein-Barr virus alkaline exonuclease protein BGLF5 contributes to shutoff activity during productive infection. J Virol. 2012;86:9175–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dauber B, Pelletier J, Smiley JR. The herpes simplex virus 1 vhs protein enhances translation of viral true late mRNAs and virus production in a cell type-dependent manner. J Virol. 2011;85:5363–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dauber B, Poon D, Dos Santos T, Duguay BA, Mehta N, Saffran HA, et al. The herpes simplex virus Virion host shutoff protein enhances translation of viral true late mRNAs independently of suppressing protein kinase R and stress granule formation. J Virol. 2016;90:6049–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taddeo B, Zhang W, Roizman B. The herpes simplex virus host shutoff RNase degrades cellular and viral mRNAs made before infection but not viral mRNA made after infection. J Virol. 2013;87:4516–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dauber B, Saffran HA, Smiley JR. The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload. J Virol. 2014;88:9624–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sadek J, Read GS. The splicing history of an mRNA affects its level of translation and sensitivity to cleavage by the Virion host shutoff endonuclease during herpes simplex virus infections. J Virol. 2016;90:10844–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shu M, Taddeo B, Zhang W, Roizman B. Selective degradation of mRNAs by the HSV host shutoff RNase is regulated by the UL47 tegument protein. Proc Natl Acad Sci U S A. 2013;110:E1669–75.
Article
PubMed
PubMed Central
Google Scholar
Elliott G, Pheasant K, Ebert-Keel K, Stylianou J, Franklyn A, Jones J. Multiple posttranscriptional strategies to regulate the herpes simplex virus 1 vhs Endoribonuclease. J Virol. 2018;92:e00818.
Article
PubMed
PubMed Central
Google Scholar
Pheasant K, Moller-Levet CS, Jones J, Depledge D, Breuer J, Elliott G. Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog. 2018;14:e1007331.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shu M, Taddeo B, Roizman B. The nuclear-cytoplasmic shuttling of Virion host shutoff RNase is enabled by pUL47 and an embedded nuclear export signal and defines the sites of degradation of AU-rich and stable cellular mRNAs. J Virol. 2013;87:13569–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taddeo B, Zhang W, Roizman B. Role of herpes simplex virus ICP27 in the degradation of mRNA by virion host shutoff RNase. J Virol. 2010;84:10182–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soliman TM, Sandri-Goldin RM, Silverstein SJ. Shuttling ofthe herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins. J Virol. 1997;71:9188–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Donnelly M, Elliott G. Nuclear localization and shuttling of herpes simplex virus tegument protein VP13/14. J Virol. 2001;75:2566–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feederle R, Mehl-Lautscham AM, Bannert H, Delecluse HJ. The Epstein-Barr virus protein kinase BGLF4 and the exonuclease BGLF5 have opposite effects on the regulation of viral protein production. J Virol. 2009;83:10877–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tian X, Devi-Rao G, Golovanov AP, Sandri-Goldin RM. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export. J Virol. 2013;87:7210–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ote I, Piette J, Sadzot-Delvaux C. The varicella-zoster virus IE4 protein: a conserved member of the herpesviral mRNA export factors family and a potential alternative target in antiherpetic therapies. Biochem Pharmacol. 2010;80:1973–80.
Article
PubMed
CAS
Google Scholar
Amor S, Strassheim S, Dambrine G, Remy S, Rasschaert D, Laurent S. ICP27 protein of Marek's disease virus interacts with SR proteins and inhibits the splicing of cellular telomerase chTERT and viral vIL8 transcripts. J Gen Virol. 2011;92:1273–8.
Article
PubMed
CAS
Google Scholar
Corbin-Lickfett KA, Rojas S, Li L, Cocco MJ, Sandri-Goldin RM. ICP27 phosphorylation site mutants display altered functional interactions with cellular export factors Aly/REF and TAP/NXF1 but are able to bind herpes simplex virus 1 RNA. J Virol. 2010;84:2212–22.
Article
PubMed
CAS
Google Scholar
Ote I, Lebrun M, Vandevenne P, Bontems S, Medina-Palazon C, Manet E, et al. Varicella-zoster virus IE4 protein interacts with SR proteins and exports mRNAs through the TAP/NXF1 pathway. PLoS One. 2009;4:e7882.
Article
PubMed
PubMed Central
CAS
Google Scholar
Csabai Z, Takacs IF, Snyder M, Boldogkoi Z, Tombacz D. Evaluation of the impact of ul54 gene-deletion on the global transcription and DNA replication of pseudorabies virus. Arch Virol. 2017;162:2679–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deng L, Zeng Q, Wang M, Cheng A, Jia R, Chen S, Zhu D, Liu M, Yang Q, Wu Y, et al. Suppression of NF-kappaB activity: a viral immune evasion mechanism. Viruses. 2018;10:E409.
Article
PubMed
CAS
Google Scholar
Lazear HM, Schoggins JW, Diamond MS. Shared and distinct functions of type I and type III Interferons. Immunity. 2019;50:907–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duerst RJ, Morrison LA. Herpes simplex virus 2 virion host shutoff protein interferes with type I interferon production and responsiveness. Virology. 2004;322:158–67.
Article
PubMed
CAS
Google Scholar
Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med. 1999;189:663–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
da Silva LF, Sinani D, Jones C. ICP27 protein encoded by bovine herpesvirus type 1 (bICP27) interferes with promoter activity of the bovine genes encoding beta interferon 1 (IFN-beta1) and IFN-beta3. Virus Res. 2012;169:162–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Su C, Zheng C. Herpes simplex virus 1 abrogates the cGAS/STING-mediated cytosolic DNA-sensing pathway via its Virion host shutoff protein, UL41. J Virol. 2017;91:e02414–6.
PubMed
PubMed Central
CAS
Google Scholar
Christensen MH, Jensen SB, Miettinen JJ, Luecke S, Prabakaran T, Reinert LS, et al. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. EMBO J. 2016;35:1385–99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guan X, Zhang M, Fu M, Luo S, Hu Q. Herpes simplex virus type 2 immediate early protein ICP27 inhibits IFN-beta production in mucosal epithelial cells by antagonizing IRF3 activation. Front Immunol. 2019;10:290.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, et al. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 2012;36:561–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh VV, Kerur N, Bottero V, Dutta S, Chakraborty S, Ansari MA, et al. Kaposi's sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J Virol. 2013;87:4417–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Diner BA, Lum KK, Javitt A, Cristea IM. Interactions of the antiviral factor IFI16 mediate immune signaling and herpes simplex virus-1 immunosuppression. Mol Cell Proteomics. 2015;14:2341–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Orzalli MH, Broekema NM, Knipe DM. Relative contributions of herpes simplex virus 1 ICP0 and vhs to loss of cellular IFI16 vary in different human cell types. J Virol. 2016;90:8351–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015;33:257–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yao XD, Rosenthal KL. Herpes simplex virus type 2 virion host shutoff protein suppresses innate dsRNA antiviral pathways in human vaginal epithelial cells. J Gen Virol. 2011;92:1981–93.
Article
PubMed
CAS
Google Scholar
Stempel M, Chan B, Brinkmann MM. Coevolution pays off: Herpesviruses have the license to escape the DNA sensing pathway. Med Microbiol Immunol. 2019;208:495–512.
Article
PubMed
CAS
Google Scholar
van Gent M, Griffin BD, Berkhoff EG, van Leeuwen D, Boer IG, Buisson M, et al. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection. J Immunol. 2011;186:1694–702.
Article
PubMed
CAS
Google Scholar
Zheng C. Evasion of cytosolic DNA-stimulated innate immune responses by herpes simplex virus 1. J Virol. 2018;92:e00099–17.
PubMed
PubMed Central
CAS
Google Scholar
Crosse KM, Monson EA, Beard MR, Helbig KJ. Interferon-stimulated genes as enhancers of antiviral innate immune signaling. J Innate Immun. 2018;10:85–93.
Article
PubMed
CAS
Google Scholar
Iwasaki A. A virological view of innate immune recognition. Annu Rev Microbiol. 2012;66:177–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johnson KE, Song B, Knipe DM. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology. 2008;374:487–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chee AV, Roizman B. Herpes simplex virus 1 gene products occlude the interferon signaling pathway at multiple sites. J Virol. 2004;78:4185–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma W, Wang H, He H. Bovine herpesvirus 1 tegument protein UL41 suppresses antiviral innate immune response via directly targeting STAT1. Vet Microbiol. 2019;239:108494.
Article
PubMed
CAS
Google Scholar
Jiang Z, Su C, Zheng C. Herpes simplex virus 1 tegument protein UL41 counteracts IFIT3 antiviral innate immunity. J Virol. 2016;90:11056–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen G, Wang K, Wang S, Cai M, Li ML, Zheng C. Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41. J Virol. 2014;88:12163–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zenner HL, Mauricio R, Banting G, Crump CM. Herpes simplex virus 1 counteracts tetherin restriction via its virion host shutoff activity. J Virol. 2013;87:13115–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Su C, Zhang J, Zheng C. Herpes simplex virus 1 UL41 protein abrogates the antiviral activity of hZAP by degrading its mRNA. Virol J. 2015;12:203.
Article
PubMed
PubMed Central
CAS
Google Scholar
You H, Yuan H, Fu W, Su C, Wang W, Cheng T, Zheng C. Herpes simplex virus type 1 abrogates the antiviral activity of Ch25h via its virion host shutoff protein. Antivir Res. 2017;143:69–73.
Article
PubMed
CAS
Google Scholar
Suzutani T, Nagamine M, Shibaki T, Ogasawara M, Yoshida I, Daikoku T, et al. The role of the UL41 gene of herpes simplex virus type 1 in evasion of non-specific host defence mechanisms during primary infection. J Gen Virol. 2000;81:1763–71.
Article
PubMed
CAS
Google Scholar
Jurak I, Silverstein LB, Sharma M, Coen DM. Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity. J Virol. 2012;86:10093–102.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Gent M, Gram AM, Boer IG, Geerdink RJ, Lindenbergh MF, et al. Silencing the shutoff protein of Epstein-Barr virus in productively infected B cells points to (innate) targets for immune evasion. J Gen Virol. 2015;96:858–65.
Article
PubMed
CAS
Google Scholar
Quinn LL, Zuo J, Abbott RJ, Shannon-Lowe C, Tierney RJ, Hislop AD, Rowe M. Cooperation between Epstein-Barr virus immune evasion proteins spreads protection from CD8+ T cell recognition across all three phases of the lytic cycle. PLoS Pathog. 2014;10:e1004322.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jung J, Munz C. Immune control of oncogenic gamma-herpesviruses. Curr Opin Virol. 2015;14:79–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Richner JM, Clyde K, Pezda AC, Cheng BY, Wang T, Kumar GR, et al. Global mRNA degradation during lytic gammaherpesvirus infection contributes to establishment of viral latency. PLoS Pathog. 2011;7:e1002150.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim JA, Choi MS, Min JS, Kang I, Oh J, Kim JC, et al. HSV-1 ICP27 represses NF-κB activity by regulating Daxx sumoylation. BMB Rep. 2017;50:275–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chae HJ, Yoo WH, Lee WS. ER stress and autophagy. Curr Mol Med. 2015;15:735–45.
Article
PubMed
CAS
Google Scholar
Su A, Wang H, Li Y, Wang X, Chen D, Wu Z. Opposite roles of RNase and kinase activities of inositol-requiring enzyme 1 (IRE1) on HSV-1 replication. Viruses. 2017;9:–E235.
Zhang P, Su C, Jiang Z, Zheng C. Herpes simplex virus 1 UL41 protein suppresses the IRE1/XBP1 signal pathway of the unfolded protein response via its RNase activity. J Virol. 2017;91:e02056–16.
PubMed
PubMed Central
CAS
Google Scholar
Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol. 2016;16:469–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith JA. A new paradigm: innate immune sensing of viruses via the unfolded protein response. Front Microbiol. 2014;5:222.
Article
PubMed
PubMed Central
Google Scholar
Johnston BP, Pringle ES, McCormick C. KSHV activates unfolded protein response sensors but suppresses downstream transcriptional responses to support lytic replication. PLoS Pathog. 2019;15:e1008185.
Article
PubMed
PubMed Central
CAS
Google Scholar
Finnen RL, Hay TJ, Dauber B, Smiley JR, Banfield BW. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation. J Virol. 2014;88:12727–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burgess HM, Mohr I. Defining the role of stress granules in innate immune suppression by the herpes simplex virus 1 Endoribonuclease VHS. J Virol. 2018;92:e00829–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Finnen RL, Banfield BW. Alphaherpesvirus subversion of stress-induced translational arrest. Viruses. 2016;8:81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fros JJ, Pijlman GP. Alphavirus infection: host cell shut-off and inhibition of antiviral responses. Viruses. 2016;8:166.
Article
PubMed Central
CAS
Google Scholar