Gaborik Z, Hunyady L. Intracellular trafficking of hormone receptors. Trends Endocrinol Metab. 2004;15(6):286–93.
Article
CAS
Google Scholar
Martin-Acebes MA, Gonzalez-Magaldi M, Sandvig K, Sobrino F, Armas-Portela R. Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology. 2007;369(1):105–18.
Article
CAS
Google Scholar
Kim C, Bergelson JM. Echovirus 7 entry into polarized intestinal epithelial cells requires clathrin and Rab7. MBio. 2012;3(2):e00304–11.
Article
CAS
Google Scholar
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12(8):517–33.
Article
CAS
Google Scholar
Mineo C, Anderson RG. Potocytosis. Robert Feulgen Lecture. Histochem Cell Biol. 2001;116(2):109–18. https://doi.org/10.1007/s004180100289.
Article
CAS
PubMed
Google Scholar
Pelkmans L, Püntener D, Helenius A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science. 2002;296(5567):535–9.
Article
CAS
Google Scholar
Krieger SE, Kim C, Zhang L, Marjomaki V, Bergelson JM. Echovirus 1 entry into polarized Caco-2 cells depends on dynamin, cholesterol, and cellular factors associated with macropinocytosis. J Virol. 2013. https://doi.org/10.1128/JVI.03415-12.
Gerondopoulos A, Jackson T, Monaghan P, Doyle N, Roberts LO. Murine norovirus-1 cell entry is mediated through a non-clathrin-, non-caveolae-, dynamin- and cholesterol-dependent pathway. J Gen Virol. 2010;91(Pt 6):1428–38.
Article
CAS
Google Scholar
Rasmussen I, Vilhardt F. Macropinocytosis is the entry mechanism of amphotropic murine leukemia virus. J Virol. 2015;89(3):1851–66.
Article
Google Scholar
Hetzenecker S, Helenius A, Krzyzaniak MA. HCMV induces macropinocytosis for host cell entry in fibroblasts. Traffic. 2016;17(4):351–68.
Article
CAS
Google Scholar
Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol. 2009;11(5):510.
Article
CAS
Google Scholar
Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol. 2012;15(4):490–9.
Article
Google Scholar
Lan D, Ji W, Yang S, Cui L, Yang Z, Yuan C, et al. Isolation and characterization of the first Chinese porcine sapelovirus strain. Arch Virol. 2011;156(9):1567.
Article
CAS
Google Scholar
Arruda P, Arruda B, Schwartz K, Vannucci F, Resende T, Rovira A, et al. Detection of a novel sapelovirus in central nervous tissue of pigs with polioencephalomyelitis in the USA. Transbound Emerg Dis. 2017;64(2):311–5.
Article
CAS
Google Scholar
Abe M, Ito N, Sakai K, Kaku Y, Oba M, Nishimura M, et al. A novel sapelovirus-like virus isolation from wild boar. Virus Genes. 2011;43(2):243–8.
Article
CAS
Google Scholar
Cano-Gomez C, Garcia-Casado MA, Soriguer R, Palero F, Jimenez-Clavero MA. Teschoviruses and sapeloviruses in faecal samples from wild boar in Spain. Vet Microbiol. 2013;165(1–2):115–22.
Article
CAS
Google Scholar
Donin DG, de Arruda LR, Alfieri AF, Alberton GC, Alfieri AA. First report of porcine teschovirus (PTV), porcine sapelovirus (PSV) and enterovirus G (EV-G) in pig herds of Brazil. Trop Anim Health Prod. 2014;46(3):523–8.
Article
Google Scholar
Son KY, Kim DS, Matthijnssens J, Kwon HJ, Park JG, Hosmillo M, et al. Molecular epidemiology of Korean porcine sapeloviruses. Arch Virol. 2014;159(5):1175–80.
Article
CAS
Google Scholar
Piorkowski G, Capai L, Falchi A, Casabianca F, Maestrini O, Gallian P, et al. First identification and genomic characterization of a porcine Sapelovirus from Corsica, France, 2017. Microbiol Res Announc. 2018;7(11):e01049–18.
Google Scholar
Bai H, Liu J, Fang L, Kataoka M, Takeda N, Wakita T, et al. Characterization of porcine sapelovirus isolated from Japanese swine with PLC/PRF/5 cells. Transbound Emerg Dis. 2018;65(3):727–34.
Article
CAS
Google Scholar
Chen J, Chen F, Zhou Q, Li W, Song Y, Pan Y, et al. Complete genome sequence of a novel porcine Sapelovirus strain YC2011 isolated from piglets with diarrhea. J Virol. 2012;86(19):10898.
Article
CAS
Google Scholar
Kim D-S, Son K-Y, Koo K-M, Kim J-Y, Alfajaro MM, Park J-G, et al. Porcine sapelovirus uses α2, 3-linked sialic acid on GD1a ganglioside as a receptor. J Virol. 2016. https://doi.org/10.1128/JVI.02449-15.
Joki-Korpela P, Marjomäki V, Krogerus C, Heino J, Hyypiä T. Entry of human parechovirus 1. J Virol. 2001;75(4):1958–67.
Article
CAS
Google Scholar
Marjomäki V, Pietiäinen V, Matilainen H, Upla P, Ivaska J, Nissinen L, et al. Internalization of echovirus 1 in caveolae. J Virol. 2002;76(4):1856–65.
Article
Google Scholar
Wang LH, Rothberg KG, Anderson RG. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol. 1993;123(5):1107–17.
Article
CAS
Google Scholar
Benmerah A, Bayrou M, Cerf-Bensussan N, Dautry-Varsat A. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci. 1999;112(Pt 9):1303–11.
CAS
PubMed
Google Scholar
Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol. 2000;2(1):42–9.
Article
CAS
Google Scholar
Rothberg KG, Ying YS, Kamen BA, Anderson RG. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol. 1990;111(6 Pt 2):2931–8.
Article
CAS
Google Scholar
Schulz WL, Haj AK, Schiff LA. Reovirus uses multiple endocytic pathways for cell entry. J Virol. 2012. https://doi.org/10.1128/JVI.01861-12.
Henley JR, Krueger EW, Oswald BJ, McNiven MA. Dynamin-mediated internalization of caveolae. J Cell Biol. 1998;141(1):85–99.
Article
CAS
Google Scholar
Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.
Article
CAS
Google Scholar
Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem. 2010;79:803–33.
Article
CAS
Google Scholar
Ebert DH, Deussing J, Peters C, Dermody TS. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem. 2002.
Pfanzagl B, Andergassen D, Edlmayr J, Niespodziana K, Valenta R, Blaas D. Entry of human rhinovirus 89 via ICAM-1 into HeLa epithelial cells is inhibited by actin skeleton disruption and by bafilomycin. Arch Virol. 2014;159(1):125–40.
Article
CAS
Google Scholar
Tuthill TJ, Harlos K, Walter TS, Knowles NJ, Groppelli E, Rowlands DJ, et al. Equine rhinitis a virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog. 2009;5(10):9.
Article
Google Scholar
Schelhaas M. Come in and take your coat off–how host cells provide endocytosis for virus entry. Cell Microbiol. 2010;12(10):1378–88.
Article
CAS
Google Scholar
Pietiäinen V, Marjomäki V, Upla P, Pelkmans L, Helenius A, Hyypiä T. Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol Biol Cell. 2004;15(11):4911–25.
Article
Google Scholar
O'donnell V, LaRocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008;82(18):9075–85.
Article
CAS
Google Scholar
Xu Q, Cao M, Song H, Chen S, Qian X, Zhao P, et al. Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization. Future Microbiol. 2016;11(10):1227–48.
Article
CAS
Google Scholar
Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001;293(5539):2449–52.
Article
CAS
Google Scholar
Oh P, McIntosh DP, Schnitzer JE. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol. 1998;141(1):101–14.
Article
CAS
Google Scholar
Sun Y, Tien P. From endocytosis to membrane fusion: emerging roles of dynamin in virus entry. Criti Rev Microbiol. 2013;39(2):166–79.
Article
CAS
Google Scholar
Swanson JA, Watts C. Macropinocytosis. Trends Cell Biol. 1995;5(11):424–8.
Article
CAS
Google Scholar
Rizopoulos Z, Balistreri G, Kilcher S, Martin CK, Syedbasha M, Helenius A, et al. Vaccinia virus infection requires maturation of macropinosomes. Traffic. 2015;16(8):814–31.
Article
CAS
Google Scholar
Delpeut S, Sisson G, Black KM, and Richardson CD, Measles virus enters breast and colon cancer cell lines through a PVRL4-mediated macropinocytosis pathway. J Virol. 2017: https://doi.org/10.1128/JVI.02191-16.
Liu Y, Shreder KR, Gai W, Corral S, Ferris DK, Rosenblum JS. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem Biol. 2005;12(1):99–107.
Article
CAS
Google Scholar
Chernikova S, Wells R, Elkind M. Wortmannin sensitizes mammalian cells to radiation by inhibiting the DNA-dependent protein kinase-mediated rejoining of double-strand breaks. Radiat Res. 1999;151(2):159–66.
Article
CAS
Google Scholar
Chiang GG and Abraham RT, Determination of the catalytic activities of mTOR and other members of the phosphoinositide-3-kinase-related kinase family. Methods Mol Biol. 2004;281:125-41.