Miller PJ, Koch G. In: Swayne DE, Glisson JR, Mcdougald LR, Nolan LK, Suarez DL, Nair VL, editors. Newcastle disease. Diseases of Poultry. 13th ed. Ames: John Wilkey and Sons, Inc; 2013. p. 89–107.
Google Scholar
Amarasinghe GK, Ceballos NGA, Banyard AC, Basler CF, Bavari S, Bennett AJ, et al. Taxonomy of the order mononegavirales: update 2018. Arch Virol. 2018:1–12.
Nagai Y, Klenk H-D, Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology. 1976;72:494–508.
Article
CAS
Google Scholar
Dimitrov KM, Ramey AM, Qiu X, Bahl J, Afonso CL. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus). Infect Genet Evol. 2016;39:22–34.
Article
Google Scholar
Commission IOoEBS, Committee IOoEI. Manual of diagnostic tests and vaccines for terrestrial animals: Mammals, birds and bees: Office international des épizooties; 2008.
Aldous E, Mynn J, Banks J, Alexander D. A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathol. 2003;32:237–55.
Article
Google Scholar
Kim LM, King DJ, Guzman H, Tesh RB, da Rosa APT, Bueno R, et al. Biological and phylogenetic characterization of pigeon paramyxovirus serotype 1 circulating in wild north american pigeons and doves. J Clin Microbiol. 2008;46:3303–10.
Article
CAS
Google Scholar
Diel DG, da Silva LH, Liu H, Wang Z, Miller PJ, Afonso CL. Genetic diversity of avian paramyxovirus type 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infect Genet Evol. 2012;12:1770–9.
Article
Google Scholar
Kim LM, King DJ, Suarez DL, Wong CW, Afonso CL. Characterization of class i Newcastle disease virus isolates from Hong Kong live bird markets and detection using real-time reverse transcription-pcr. J Clin Microbiol. 2007;45:1310–4.
Article
CAS
Google Scholar
Wise MG, Suarez DL, Seal BS, Pedersen JC, Senne DA, King DJ, et al. Development of a real-time reverse-transcription pcr for detection of Newcastle disease virus rna in clinical samples. J Clinl Microbiol. 2004;42:329–38.
Article
CAS
Google Scholar
Kim LM, Afonso CL, Suarez DL. Effect of probe-site mismatches on detection of virulent Newcastle disease viruses using a fusion-gene real-time reverse transcription polymerase chain reaction test. J Vet Diagn Investig. 2006;18:519–28.
Article
Google Scholar
Sabra M, Dimitrov KM, Goraichuk IV, Wajid A, Sharma P, Williams-Coplin D, et al. Phylogenetic assessment reveals continuous evolution and circulation of pigeon-derived virulent avian avulaviruses 1 in eastern europe, asia, and africa. BMC Vet Res. 2017;13:291.
Article
Google Scholar
Kim LM, Suarez DL, Afonso CL. Detection of a broad range of class i and ii Newcastle disease viruses using a multiplex real-time reverse transcription polymerase chain reaction assay. J Vet Diagn Investig. 2008;20:414–25.
Article
Google Scholar
Fuller CM, Brodd L, Irvine RM, Alexander DJ, Aldous EW. Development of an l gene real-time reverse-transcription pcr assay for the detection of avian paramyxovirus type 1 rna in clinical samples. Arch Virol. 2010;155:817–23.
Article
CAS
Google Scholar
FLU-LAB-NET. https://science.vla.gov.uk/flu-lab-net/docs/pub-protocol-avian-avulavirus-mole-pathotyp.pdf. Accessed 24 Sept 2018.
Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J. High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol. 2016;56:394–404.
Article
CAS
Google Scholar
Rhoads A, Au KF. Pacbio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13:278–89.
Article
Google Scholar
Chiu CY. Viral pathogen discovery. Curr Opin Microbiol. 2013;16:468–78.
Article
CAS
Google Scholar
Dimitrov KM, Sharma P, Volkening JD, Goraichuk IV, Wajid A, Rehmani SF, et al. A robust and cost-effective approach to sequence and analyze complete genomes of small rna viruses. Virol J. 2017;14:72.
Article
Google Scholar
Cruz-Rivera M, Forbi JC, Yamasaki L, Vazquez-Chacon CA, Martinez-Guarneros A, Carpio-Pedroza JC, et al. Molecular epidemiology of viral diseases in the era of next generation sequencing. J Clin Virol. 2013;57:378–80.
Article
CAS
Google Scholar
Marston DA, McElhinney LM, Ellis RJ, Horton DL, Wise EL, Leech SL, et al. Next generation sequencing of viral rna genomes. BMC Genomics. 2013;14:444.
Article
CAS
Google Scholar
Gullapalli RR, Desai KV, Santana-Santos L, Kant JA, Becich MJ. Next generation sequencing in clinical medicine: challenges and lessons for pathology and biomedical informatics. J Pathol Inform. 2012;3:40.
Article
Google Scholar
Phan H, Stoesser N, Maciuca I, Toma F, Szekely E, Flonta M, et al. Illumina short-read and minion long-read whole genome sequencing to characterise the molecular epidemiology of an ndm-1-serratia marcescens outbreak in Romania. J Antimicrob Chemother. 2017;73(3):672–9.
Article
Google Scholar
Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 2015;7:99.
Article
Google Scholar
Kilianski A, Haas JL, Corriveau EJ, Liem AT, Willis KL, Kadavy DR, et al. Bacterial and viral identification and differentiation by amplicon sequencing on the minion nanopore sequencer. Gigascience. 2015;4:12.
Article
Google Scholar
Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, et al. Minion nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol. 2015;33:296.
Article
CAS
Google Scholar
Lemon JK, Khil PP, Frank KM, Dekker JP. Rapid nanopore sequencing of plasmids and resistance gene detection in clinical isolates. J Clin Microbiol. 2017;55:3530–43.
Article
CAS
Google Scholar
Wang J, Moore NE, Deng Y-M, Eccles DA, Hall RJ. Minion nanopore sequencing of an influenza genome. Front Microbiol. 2015;6:766.
PubMed
PubMed Central
Google Scholar
Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time, portable genome sequencing for ebola surveillance. Nature. 2016;530:228.
Article
CAS
Google Scholar
Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, et al. Multiplex pcr method for minion and illumina sequencing of zika and other virus genomes directly from clinical samples. Nat Protoc. 2017;12:1261.
Article
CAS
Google Scholar
Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Res. 2016;26:1721–9.
Article
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
Article
CAS
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
Article
CAS
Google Scholar
Ip CL, Loose M, Tyson JR, de Cesare M, Brown BL, Jain M, et al. Minion analysis and reference consortium: phase 1 data release and analysis. F1000Research. 2015;4:1075.
Article
Google Scholar
Schloss PD, Jenior ML, Koumpouras CC, Westcott SL, Highlander SK. Sequencing 16s rrna gene fragments using the pacbio smrt DNA sequencing system. PeerJ. 2016;4:e1869.
Article
Google Scholar
Li C, Chng KR, Boey EJH, Ng AHQ, Wilm A, Nagarajan N. Inc-seq: Accurate single molecule reads using nanopore sequencing. GigaScience. 2016;5:34.
Article
CAS
Google Scholar
Alexander D, Swayne D. Newcastle disease virus and other avian paramyxoviruses, p 156–163. A laboratory manual for the isolation and identification of avian pathogens 1998; 4.
Miller PJ, Dimitrov KM, Williams-Coplin D, Peterson MP, Pantin-Jackwood MJ, Swayne DE, et al. International biological engagement programs facilitate Newcastle disease epidemiological studies. Front Public Health. 2015;3:235.
Article
Google Scholar
Afgan E, Baker D, Van den Beek M, Blankenberg D, Bouvier D, Čech M, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3–W10.
Article
CAS
Google Scholar
Porechop- an adapter trimming tool https://github.com/rrwick/Porechop. Accessed 15 Jan 2018.
Myers G, Editor efficient local alignment discovery amongst noisy long reads 2014; Berlin, Heidelberg: springer Berlin Heidelberg.
Katoh K, Misawa K, Ki K, Miyata T. Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. In: arXiv preprint arXiv:13033997; 2013.
Google Scholar
Nanopolish – a software package for signal-level analysis of Oxford Nanopore sequencing data to calculate an improved consensus sequence for a draft genome assembly. https://github.com/jts/nanopolish. Accessed 15 Jan 2018.
He Y, Taylor TL, Dimitrov KM, Butt SL, Stanton JB, Goraichuk IV, et al. Whole-genome sequencing of genotype vi newcastle disease viruses from formalin-fixed paraffin-embedded tissues from wild pigeons reveals continuous evolution and previously unrecognized genetic diversity in the us. Virol J. 2018;15:9.
Article
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Article
CAS
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. Mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
Google Scholar
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–26.
CAS
PubMed
Google Scholar
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101:11030–5.
Article
CAS
Google Scholar
Nayak B, Dias FM, Kumar S, Paldurai A, Collins PL, Samal SK. Avian paramyxovirus serotypes 2-9 (apmv-2-9) vary in the ability to induce protective immunity in chickens against challenge with virulent Newcastle disease virus (apmv-1). Vaccine. 2012;30:2220–7.
Article
CAS
Google Scholar
Seal BS, King DJ, Bennett JD. Characterization of Newcastle disease virus isolates by reverse transcription pcr coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiological analysis. J Clin Microbiol. 1995;33:2624–30.
CAS
PubMed
PubMed Central
Google Scholar
Seal BS, King DJ, Locke DP, Senne DA, Jackwood MW. Phylogenetic relationships among highly virulent Newcastle disease virus isolates obtained from exotic birds and poultry from 1989 to 1996. J Clin Microbiol. 1998;36:1141–5.
CAS
PubMed
PubMed Central
Google Scholar
Rue CA, Susta L, Brown CC, Pasick JM, Swafford SR, Wolf PC, et al. Evolutionary changes affecting rapid identification of 2008 Newcastle disease viruses isolated from double-crested cormorants. J Clin Microbiol. 2010;48:2440–8.
Article
Google Scholar
Wei S, Weiss ZR, Williams Z, Rapid multiplex small DNA. Sequencing on the minion nanopore sequencing platform. G3. Genes, Genomes, Genetics. 2018;g3(200087):2018.
Google Scholar
Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 2016;32:2103–10.
Article
CAS
Google Scholar
Jain M, Tyson JR, Loose M, Ip CL, Eccles DA, O'Grady J, et al. Minion analysis and reference consortium: phase 2 data release and analysis of r9. 0 chemistry F1000Research. 2017;6.
Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733.
Article
CAS
Google Scholar
Phillips R, Samson A, Emmerson P. Nucleotide sequence of the 5′-terminus of Newcastle disease virus and assembly of the complete genomic sequence: agreement with the “rule of six”. Arch Virol. 1998;143:1993–2002.
Article
CAS
Google Scholar