Wong TC, Wipf G, Hirano A. The measles virus matrix gene and gene product defined by in vitro and in vivo expression. Virology. 1987;157:497–508.
Article
CAS
PubMed
Google Scholar
Cathomen T, Buchholz CJ, Spielhofer P, Cattaneo R. Preferential initiation at the second AUG of the measles virus F mRNA: a role for the long untranslated region. Virology. 1995;214:628–32.
Article
CAS
PubMed
Google Scholar
Takeda M, Ohno S, Seki F, Nakatsu Y, Tahara M, Yanagi Y. Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J Virol. 2005;79:14346–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson DE, von Messling V. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol. 2008;82:10510–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson DE, Castan A, Bisaillon M, von Messling V. Elements in the canine distemper virus M 3′ UTR contribute to control of replication efficiency and virulence. PLoS One. 2012;7:e31561.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chulakasian S, Chang TJ, Tsai CH, Wong ML, Hsu WL. Translational enhancing activity in 5′ UTR of peste des petits ruminants virus fusion gene. FEBS J. 2013;280:1237–48.
Article
CAS
PubMed
Google Scholar
Penedos AR, Myers R, Hadef B, Aladin F, Brown KE. Assessment of the utility of whole genome sequencing of measles virus in the characterisation of outbreaks. PLoS One. 2015;10:e0143081.
Article
PubMed
PubMed Central
Google Scholar
Šantak M, Baričević M, Mažuran R, Forčić D. Intra- and intergenotype characterization of D6 measles virus genotype. Infect Genet Evol. 2007;7:645–50.
Article
PubMed
Google Scholar
Heider A, Santibanez S, Tischer A, Gerike E, Tikhonova N, Ignatyev G, Mrazova M, Enders G, Schreier E. Comparative investigation of the long non-coding M-F genome region of wild-type and vaccine measles viruses. Arch Virol. 1997;142:2521–8.
Article
CAS
PubMed
Google Scholar
Calain P, Roux L. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol. 1993;67:4822–30.
CAS
PubMed
PubMed Central
Google Scholar
Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L. Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol. 1998;72:891–9.
CAS
PubMed
PubMed Central
Google Scholar
Vulliémoz D, Roux L. “Rule of six”: how does the Sendai virus RNA polymerase keep count? J Virol. 2001;75:4506–18.
Article
PubMed
PubMed Central
Google Scholar
Rima BK, Collin AMJ, Earle JAP. Completion of the sequence of a cetacean morbillivirus and comparative analysis of the complete genome sequences of four morbilliviruses. Virus Genes. 2005;30:113–9.
Article
CAS
PubMed
Google Scholar
Rima BK, Duprex WP. The measles virus replication cycle. Curr Top Microbiol Immunol. 2009;329:77–102.
CAS
PubMed
Google Scholar
Baricevic M, Forcic D, Santak M, Mazuran R. A comparison of complete untranslated regions of measles virus genomes derived from wild-type viruses and SSPE brain tissues. Virus Genes. 2007;35:17–27.
Article
CAS
PubMed
Google Scholar
Bankamp B, Liu C, Rivailler P, Bera J, Shrivastava S, Kirkness EF, Bellini WJ, Rota PA. Wild-type measles viruses with non-standard genome lengths. PLoS One. 2014;9:e95470.
Article
PubMed
PubMed Central
Google Scholar
Skiadopoulos MH, Vogel L, Riggs JM, Surman SR, Collins PL, Murphy BR. The genome length of human parainfluenza virus type 2 follows the rule of six, and recombinant viruses recovered from non-polyhexameric-length antigenomic cDNAs contain a biased distribution of correcting mutations. J Virol. 2003;77:270–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skiadopoulos MH, Surman SR, Riggs JM, Orvell C, Collins PL, Murphy BR. Evaluation of the replication and immunogenicity of recombinant human parainfluenza virus type 3 vectors expressing up to three foreign glycoproteins. Virology. 2002;297:136–52.
Article
CAS
PubMed
Google Scholar
Rager M, Vongpunsawad S, Duprex WP, Cattaneo R. Polyploid measles virus with hexameric genome length. EMBO J. 2002;21:2364–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hausmann S, Jacques JP, Kolakofsky D. Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA. 1996;2:1033–45.
CAS
PubMed
PubMed Central
Google Scholar
Jacques JP, Kolakofsky D. Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev. 1991;5:707–13.
Article
CAS
PubMed
Google Scholar
Kolakofsky D, Roux L, Garcin D, Ruigrok RW. Paramyxovirus mRNA editing, the “rule of six” and error catastrophe: a hypothesis. J Gen Virol. 2005;86:1869–77.
Article
CAS
PubMed
Google Scholar
Ivancic-Jelecki J, Baricevic M, Šantak M, Harcet M, Tešović G, Marusic Della Marina B, Forcic D. The first genetic characterization of a D4 measles virus strain derived from a patient with subacute sclerosing panencephalitis. Infect Genet Evol. 2013;17:71–8.
Article
CAS
PubMed
Google Scholar
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.
Article
CAS
PubMed
Google Scholar
Lou M, Golding GB. Fingerprint: Visual depiction of variation in multiple sequence alignments. Mol Ecol Notes. 2007;7:908–14.
Article
CAS
Google Scholar
WHO. Measles virus nomenclature update:2012. Wkly Epidemiol Rec. 2012;89:73–80.
Google Scholar
Rota PA, Liffick SL, Rota JS, Katz RS, Redd S, Papania M, Bellini WJ. Molecular epidemiology of measles viruses in the United States, 1997-2001. Emerg Infect Dis. 2002;8:902–8.
Article
PubMed
PubMed Central
Google Scholar
Forčić D, Baričević M, Zgorelec R, Kružić V, Kaić B, Marušić Della Marina B, Šojat Cvitanović L, Tešović G, Mažuran R. Detection and characterization of measles virus strains in cases of subacute sclerosing panencephalitis in Croatia. Virus Res. 2004;99:51–6.
Article
PubMed
Google Scholar
Dong J, Saito A, Mine Y, Sakuraba Y, Nibe K, Goto Y, Komase K, Nakayama T, Miyata H, Iwata H, Haga T. Adaptation of wild-type measles virus to cotton rat lung cells: E89K mutation in matrix protein contributes to its fitness. Virus Genes. 2009;39:330–4.
Article
CAS
PubMed
Google Scholar
Hotta H, Nihei K, Abe Y, Kato S, Jiang DP, Nagano-Fujii M, Sada K. Full-length sequence analysis of subacute sclerosing panencephalitis (SSPE) virus, a mutant of measles virus, isolated from brain tissues of a patient shortly after onset of SSPE. Microbiol Immunol. 2006;50:525–34.
Article
CAS
PubMed
Google Scholar
Cattaneo R, Schmid A, Spielhofer P, Kaelin K, Baczko K, ter Meulen V, Pardowitz J, Flanagan S, Rima BK, Udem SA, Billeter MA. Mutated and hypermutated genes of persistent measles viruses which caused lethal human brain diseases. Virology. 1989;173:415–25.
Article
CAS
PubMed
Google Scholar
Rota JS, Wang ZD, Rota PA, Bellini WJ. Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res. 1994;31:317–30.
Article
CAS
PubMed
Google Scholar
Blumberg BM, Crowley JC, Silverman JI, Menonna J, Cook SD, Dowling PC. Measles virus L protein evidences elements of ancestral RNA polymerase. Virology. 1988;164:487–97.
Article
CAS
PubMed
Google Scholar
Paldurai A, Xiao S, Kim SH, Kumar S, Nayak B, Samal S, Collins PL, Samal SK. Effects of naturally occurring six- and twelve-nucleotide inserts on Newcastle disease virus replication and pathogenesis. PLoS One. 2014;9:e103951.
Article
PubMed
PubMed Central
Google Scholar
Wernegreen JJ, Kauppinen SN, Degnan PH. Slip into something more functional: selection maintains ancient frameshifts in homopolymeric sequences. Mol Biol Evol. 2010;27:833–9.
Article
CAS
PubMed
Google Scholar
Ackermann M, Chao L. DNA sequences shaped by selection for stability. PLoS Genet. 2006;2:e22.
Article
PubMed
PubMed Central
Google Scholar
Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF. Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol. 2005;6:R25.
Article
PubMed
PubMed Central
Google Scholar
Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 1990;18:3529–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wenthzel AM, Stancek M, Isaksson LA. Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett. 1998;421:237–42.
Article
CAS
PubMed
Google Scholar
Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA. Analysis of the noncoding regions of measles virus strains in the Edmonston vaccine lineage. J Virol. 2001;75:921–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domingo E, Holland JJ. RNA virus mutations and fitness for survival. Annu Rev Microbiol. 1997;51:151–78.
Article
CAS
PubMed
Google Scholar