Hull R, Geering A, Harper G, Lockhart BE, Schoelz JE: Caulimoviridae. In Virus Taxonomy, VIIIth Report of the ICTV. Edited by: Fauquet C.M. MMAMJDUBLA. London , Elsevier/Academic Press; 2005:385-396.
Google Scholar
Takatsuji H, Hirochika H, Fukushi T, Ikeda J: Expression of cauliflower mosaic virus reverse transcriptase in yeast. Nature 1986, 319: 240-243. 10.1038/319240a0
Article
CAS
Google Scholar
Laco GS, Beachy RN: Rice tungro bacilliform virus encodes reverse transcriptase, DNA polymerase and ribonuclease H activities. Proceedings of the National Academy of Sciences of the USA 1994, 91: 2654-2658.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rothnie HM, Chapdelaine Y, Hohn T: Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res 1994, 44: 1-67.
Article
CAS
PubMed
Google Scholar
Hohn T, Fütterer J: The proteins and functions of plant pararetroviruses : knowns and unknowns. Critical Review in Plant Sciences 1997,16(1):133-161.
Article
CAS
Google Scholar
Oroszlan S, Luftig RB: Retroviral proteinases. In Current Topics in Microbiology and Immunology. Volume 157. Berlin, Heidelberg , Springer-Verlag; 1990:153-185.
Google Scholar
Torruella M, Gordon K, Hohn T: Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins. Embo J 1989,8(10):2819-2825.
PubMed Central
CAS
PubMed
Google Scholar
Hibino H, Roechan M, Sudarisman S: Association of two types of virus particules with Penyakit Habang (Tungro Disease) of rice in Indonesia. Phytopathology 1978, 68: 1412-1416.
Article
Google Scholar
Jones MC, Gough K, Dasgupta I, Subba Rao BL, Cliffe J, Qu R, Shen P, Kaniewska M, Blakebrough M, Davies JW, Beachy RN, Hull R: Rice tungro disease is caused by an RNA and a DNA virus. Journal of General Virology 1991, 72: 757-761.
Article
CAS
PubMed
Google Scholar
Hay JM, Jones MC, Blakebrough ML, Dasgupta I, Davies JW, Hull R: An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Research 1991,19(10):2615-2621.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qu R, Bhattacharyaa M, Laco G, Kochko de A, Subba Rao BL, Kaniewska M, Elmer JS, Rochester DE, Smith CE, Beachy RN: Characterization of the genome of rice tungro bacilliform virus: comparison with commelina yellow mottle virus and caulimoviruses. Virology 1991,185(1):354-364. 10.1016/0042-6822(91)90783-8
Article
CAS
PubMed
Google Scholar
Shen P, Kaniewska M, Smith C, Beachy RN: Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 1993, 193: 621-630. 10.1006/viro.1993.1170
Article
CAS
PubMed
Google Scholar
Le Gall O, Iwanami Y, Karasev AE, Jones T, Lehto K, Sanfaçon H, Wellink J, Wetzel T, Yoshikawa N: Sequiviridae. In Virus Taxonomy, VIIIth Report of the ICTV. Edited by: Fauquet C.M. MMAMJDUBLA. London , Elsevier/Academic Press; 2005:793-798.
Google Scholar
Hibino H: Relations of rice tungro bacilliform and rice tungro spherical viruses with their vector Nephotettix virescens. Ann Phytopath Soc Jap 1983,49(4):545-553.
Article
Google Scholar
Hibino H: Transmission of two rice tungro-associated viruses and rice waika virus from doubly or singly infected source of plants by leafhopper vectors. Plant Disease 1983, 67: 774-777.
Article
Google Scholar
Bao Y, Hull R: Replication intermediates of rice tungro bacilliform virus DNA support a replication mechanism involving reverse transcription. Virology 1994, 204: 626-633. 10.1006/viro.1994.1577
Article
CAS
PubMed
Google Scholar
Hull R: Molecular biology of rice tungro viruses. Annual Review of Phytopathology 1996, 34: 275-297. 10.1146/annurev.phyto.34.1.275
Article
CAS
PubMed
Google Scholar
Marmey P, Bothner B, Jacquot E, de Kochko A, Ong CA, Yot P, Siuzdak G, Beachy RN, Fauquet CM: Rice tungro bacilliform virus open reading frame 3 encodes a single 37-kDa coat protein. Virology 1999, 253: 319-326. 10.1006/viro.1998.9519
Article
CAS
PubMed
Google Scholar
Laco GS, Kent SBH, Beachy RN: Analysis of the proteolytic processing and activation of the rice tungro bacilliform virus reverse transcriptase. Virology 1995, 208: 207-214. 10.1006/viro.1995.1144
Article
CAS
PubMed
Google Scholar
Hay J, Grieco F, Druka A, Pinner M, Lee SC, Hull R: Detection of rice tungro bacilliform virus gene products in vivo. Virology 1994,205(2):430-437. 10.1006/viro.1994.1663
Article
CAS
PubMed
Google Scholar
Kurowski MA, Bujnicki JM: Genesilico protein structure prediction metaserver. Nucleic Acid Research 2003, 31: 3305-3307. 10.1093/nar/gkg557
Article
CAS
Google Scholar
Yasunaga T, Sagata N, Ikawa Y: Protease gene structure and env gene variability of the AIDS virus. FEBS Lett 1986,199(2):145-150. 10.1016/0014-5793(86)80468-9
Article
CAS
PubMed
Google Scholar
Pearl LH, Taylor WR: A structural model for the retroviral proteases. Nature 1987,329(6137):351-354. 10.1038/329351a0
Article
CAS
PubMed
Google Scholar
Miller M, Jaskolski M, Rao JK, Leis J, Wlodawer A: Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature 1989,337(6207):576-579. 10.1038/337576a0
Article
CAS
PubMed
Google Scholar
Navia MA, Fitzgerald PM, McKeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP: Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 1989,337(6208):615-620. 10.1038/337615a0
Article
CAS
PubMed
Google Scholar
Wlodawer A, Gustchina A: Structural and biochemical studies of retroviral proteases. Biochim Biophys Acta 2000,1477(1-2):16-34.
Article
CAS
PubMed
Google Scholar
Laco GS, Fitzgerald MC, Morris GM, Olson AJ, Kent SB, Elder JH: Molecular analysis of the feline immunodeficiency virus protease: generation of a novel form of the protease by autoproteolysis and construction of cleavage-resistant proteases. J Virol 1997,71(7):5505-5511.
PubMed Central
CAS
PubMed
Google Scholar
Rose JR, Salto R, Craik CS: Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J Biol Chem 1993,268(16):11939-11945.
CAS
PubMed
Google Scholar
Poorman RA, Tomasselli AG, Heinrikson RL, Kezdy FJ: A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base. J Biol Chem 1991,266(22):14554-14561.
CAS
PubMed
Google Scholar
Pettit SC, Michael SF, Swanstrom R: The specificity of the HIV-1 protease. Perspect Drug Discovery Design 1993, 1: 69-83.
Article
CAS
Google Scholar
Chait BT, Kent SBH: Weighing naked proteins: Practical high-accuracy mass measurement of peptides and proteins. Science 1992, 257: 1885-1894.
Article
CAS
PubMed
Google Scholar
Fold Prediction Metaserver[http://genesilico.pl]
Tress ML, Jones D, Valencia A: Predicting reliable regions in protein alignments from sequence profiles. J Mol Biol 2003,330(4):705-718. 10.1016/S0022-2836(03)00622-3
Article
CAS
PubMed
Google Scholar
Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003,31(13):3381-3385. 10.1093/nar/gkg520
Article
PubMed Central
CAS
PubMed
Google Scholar
Protein Structure Quality Score[http://www1.jcsg.org/psqs/]
Centre for Molecular and Biomolecular Informatics[http://www.cmbi.kun.nl/gv/servers/]
Koradi R, Billeter M, Wuthrich K: MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 1996,14(1):51-5, 29-32. 10.1016/0263-7855(96)00009-4
Article
CAS
PubMed
Google Scholar
Laemmli UK: Cleavage of the structural proteins during the assembly of the head of the bacteriophage T4. Nature 1970, 227: 680-685.
Article
CAS
PubMed
Google Scholar
Wu J, Adomat JM, Ridky TW, Louis JM, Leis J, Harrison RW, Weber IT: Structural basis for specificity of retroviral proteases. Biochemistry 1998,37(13):4518-4526. 10.1021/bi972183g
Article
CAS
PubMed
Google Scholar
Berger A, Schechter I: Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci 1970,257(813):249-264.
Article
CAS
PubMed
Google Scholar