Moukassa D, Boumba AM, Ngatali CF, Ebatetou A, Mbon JBN, Ibara J-R. Virus-induced cancers in Africa: epidemiology and carcinogenesis mechanisms. Open J Pathol. 2018;08:1–14.
Article
CAS
Google Scholar
Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68.
Article
CAS
Google Scholar
Smatti MK, Yassine HM, AbuOdeh R, AlMarawani A, Taleb SA, Althani AA, et al. Prevalence and molecular profiling of Epstein Barr virus (EBV) among healthy blood donors from different nationalities in Qatar. PLoS ONE. 2017;12:e0189033.
Article
Google Scholar
Tzellos S, Farrell PJ. Epstein–Barr virus sequence variation—biology and disease. Pathogens Multidiscip. 2012;1:156–74.
Article
CAS
Google Scholar
Shannon-Lowe C, Rickinson A. The global landscape of EBV-associated tumors. Front Oncol. 2019;9:713.
Article
Google Scholar
Mawson AR, Majumdar S. Malaria, Epstein–Barr virus infection and the pathogenesis of Burkitt’s lymphoma. Int J Cancer. 2017;141:1849–55.
Article
CAS
Google Scholar
De-Thé G. Etiology of Burkitt’s lymphoma. Recent Results Cancer Res. 1972;39:225–6.
Article
Google Scholar
Chêne A, Donati D, Guerreiro-Cacais AO, Levitsky V, Chen Q, Falk KI, et al. A molecular link between malaria and Epstein–Barr virus reactivation. PLoS Pathog. 2007;3:e80.
Article
Google Scholar
Reynaldi A, Schlub TE, Chelimo K, Sumba PO, Piriou E, Ogolla S, et al. Impact of plasmodium falciparum coinfection on longitudinal Epstein–Barr virus kinetics in Kenyan children. J Infect Dis. 2016;213:985–91.
Article
Google Scholar
Hu H-M, Kanda K, Zhang L, Boxer LM. Activation of the c-myc p1 promoter in Burkitt’s lymphoma by the hs3 immunoglobulin heavy-chain gene enhancer. Leukemia. 2007;21:747–53.
Article
CAS
Google Scholar
Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. The extent of genetic diversity of Epstein–Barr virus and its geographic and disease patterns: a need for reappraisal. Virus Res. 2009;143:209–21.
Article
CAS
Google Scholar
Stefan C, Bray F, Ferlay J, Liu B, Maxwell PD. Cancer of childhood in sub-Saharan Africa. Ecancermedicalscience. 2017;11:755.
Article
Google Scholar
Kwok H, Wu CW, Palser AL, Kellam P, Sham PC, Kwong DLW, et al. Genomic diversity of Epstein–Barr virus genomes isolated from primary nasopharyngeal carcinoma biopsy samples. J Virol. 2014;88:10662–72.
Article
CAS
Google Scholar
Tang M, Lautenberger JA, Gao X, Sezgin E, Hendrickson SL, Troyer JL, et al. The principal genetic determinants for nasopharyngeal carcinoma in China involve the HLA class I antigen recognition groove. PLoS Genet. 2012;8:e1003103.
Article
CAS
Google Scholar
Su W-H, Hildesheim A, Chang Y-S. Human leukocyte antigens and Epstein–Barr virus-associated nasopharyngeal carcinoma: old associations offer new clues into the role of immunity in infection-associated cancers. Front Oncol. 2013;3:299.
Article
Google Scholar
Kelly-Hope LA, Hemingway J, McKenzie FE. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malar J. 2009;8:268.
Article
Google Scholar
Pedersen M, Asprusten TT, Godang K, Leegaard TM, Osnes LT, Skovlund E, et al. Lifestyle factors during acute Epstein–Barr virus infection in adolescents predict physical activity six months later. Acta Paediatr. 2019;108:1521–6.
Article
CAS
Google Scholar
Kang M-S, Kieff E. Epstein–Barr virus latent genes. Exp Mol Med. 2015;47:e131–e131.
Article
CAS
Google Scholar
Kempkes B, Robertson ES. Epstein–Barr virus latency: current and future perspectives. Curr Opin Virol. 2015;14:138–44.
Article
CAS
Google Scholar
Santpere G, Darre F, Blanco S, Alcami A, Villoslada P, Mar Albà M, et al. Genome-wide analysis of wild-type Epstein–Barr virus genomes derived from healthy individuals of the 1000 genomes project. Genome Biol Evol. 2014;6:846–60.
Article
Google Scholar
Kaymaz Y, Oduor CI, Aydemir O, Luftig MA, Otieno JA, Ong’echa JM, et al. Epstein–Barr virus genomes reveal population structure and type 1 association with endemic Burkitt lymphoma. J Virol. 2020;94:e02007-19.
Article
Google Scholar
Telford M, Hughes DA, Juan D, Stoneking M, Navarro A, Santpere G. Expanding the geographic characterisation of Epstein–Barr virus variation through gene-based approaches. Microorganisms. 2020;8:1686.
Article
CAS
Google Scholar
Palser AL, Grayson NE, White RE, Corton C, Correia S, Ba abdullah MM, et al. Genome diversity of Epstein–Barr virus from multiple tumor types and normal infection. J Virol. 2015;89:5222–37.
Article
CAS
Google Scholar
Choi SJ, Jung SW, Huh S, Cho H, Kang H. Phylogenetic comparison of Epstein–Barr virus genomes. J Microbiol. 2018;56:525–33.
Article
CAS
Google Scholar
Kwok H, Tong AHY, Lin CH, Lok S, Farrell PJ, Kwong DLW, et al. Genomic sequencing and comparative analysis of Epstein–Barr virus genome isolated from primary nasopharyngeal carcinoma biopsy. PLoS ONE. 2012;7:e36939.
Article
CAS
Google Scholar
Han J, Chen J-N, Zhang Z-G, Li H-G, Ding Y-G, Du H, et al. Sequence variations of latent membrane protein 2A in Epstein–Barr virus-associated gastric carcinomas from Guangzhou, southern China. PLoS ONE. 2012;7:e34276.
Article
CAS
Google Scholar
Jia Y, Wang Y, Chao Y, Jing Y, Sun Z, Luo B. Sequence analysis of the Epstein–Barr virus (EBV) BRLF1 gene in nasopharyngeal and gastric carcinomas. Virol J. 2010;7:341.
Article
Google Scholar
Thompson MP, Kurzrock R. Epstein–Barr virus and cancer. Clin Cancer Res. 2004;10:803–21.
Article
CAS
Google Scholar
Lucchesi W, Brady G, Dittrich-Breiholz O, Kracht M, Russ R, Farrell PJ. Differential gene regulation by Epstein–Barr virus type 1 and type 2 EBNA2. J Virol. 2008;82:7456–66.
Article
CAS
Google Scholar
Rowe M, Rowe DT, Gregory CD, Young LS, Farrell PJ, Rupani H, et al. Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO J. 1987;6:2743–51.
Article
CAS
Google Scholar
Pérez-Losada M, Arenas M, Galán JC, Palero F, González-Candelas F. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infect Genet Evol. 2015;30:296–307.
Article
Google Scholar
Zanella L, Riquelme I, Buchegger K, Abanto M, Ili C, Brebi P. A reliable Epstein–Barr virus classification based on phylogenomic and population analyses. Sci Rep. 2019;9:9829.
Article
Google Scholar
Berenstein AJ, Lorenzetti MA, Preciado MV. Recombination rates along the entire Epstein Barr virus genome display a highly heterogeneous landscape. Infect Genet Evol. 2018;65:96–103.
Article
CAS
Google Scholar
Wilkinson DE, Weller SK. The role of DNA recombination in herpes simplex virus DNA replication. IUBMB Life. 2003;55:451–8.
Article
CAS
Google Scholar
Oh J-K, Weiderpass E. Infection and cancer: global distribution and burden of diseases. Ann Glob Health. 2014;80:384–92.
Article
Google Scholar
Rainey JJ, Mwanda WO, Wairiumu P, Moormann AM, Wilson ML, Rochford R. Spatial distribution of Burkitt’s lymphoma in Kenya and association with malaria risk. Trop Med Int Health. 2007;12:936–43.
Article
Google Scholar
Piriou E, Asito AS, Sumba PO, Fiore N, Middeldorp JM, Moormann AM, et al. Early age at time of primary Epstein-Barr virus infection results in poorly controlled viral infection in infants from Western Kenya: clues to the etiology of endemic Burkitt lymphoma. J Infect Dis. 2012;205:906–13.
Article
Google Scholar
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. 2009;537:39–64.
Article
CAS
Google Scholar
Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20:348–55.
Article
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Article
CAS
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.
Article
CAS
Google Scholar
Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:vev003.
Article
Google Scholar
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.
Article
Google Scholar
Team RC, Others. R: A language and environment for statistical computing. 2013.
Mwanda OW, Rochford R, Moormann AM, Macneil A, Whalen C, Wilson ML. Burkitt’s lymphoma in Kenya: geographical, age, gender and ethnic distribution. East Afr Med J. 2004;8:S68-77.
Google Scholar
Moormann AM, Chelimo K, Sumba OP, Lutzke ML, Ploutz-Snyder R, Newton D, et al. Exposure to holoendemic malaria results in elevated Epstein–Barr virus loads in children. J of Infect Dis. 2005;191:1233–8.
Article
Google Scholar
Moormann AM, Snider CJ, Chelimo K. The company malaria keeps: how co-infection with Epstein–Barr virus leads to endemic Burkitt lymphoma. Curr Opin Infect Dis. 2011;24:435–41.
Article
Google Scholar
Depledge DP, Palser AL, Watson SJ, Lai IY-C, Gray ER, Grant P, et al. Specific capture and whole-genome sequencing of viruses from clinical samples. PLoS ONE. 2011;6:e27805.
Article
CAS
Google Scholar
Wylie TN, Wylie KM, Herter BN, Storch GA. Enhanced virome sequencing using targeted sequence capture. Genome Res. 2015;25:1910–20.
Article
CAS
Google Scholar
Bowden R, Sakaoka H, Donnelly P, Ward R. High recombination rate in herpes simplex virus type 1 natural populations suggests significant co-infection1. Infect Gen Evol. 2004;4:115–23.
Article
CAS
Google Scholar
Smith LM, McWhorter AR, Shellam GR, Redwood AJ. The genome of murine cytomegalovirus is shaped by purifying selection and extensive recombination. J Virol. 2013;435:258–68.
Article
CAS
Google Scholar
Sijmons S, Thys K, Mbong Ngwese M, Van Damme E, Dvorak J, Van Loock M, et al. High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-disrupting mutations and pervasive recombination. J Virol. 2015;89:7673–95.
Article
CAS
Google Scholar
Balaban M, Moshiri N, Mai U, Jia X, Mirarab S. TreeCluster: clustering biological sequences using phylogenetic trees. PLoS ONE. 2019;14:e0221068.
Article
CAS
Google Scholar
Rieux A, Balloux F. Inferences from tip-calibrated phylogenies: a review and a practical guide. Mol Ecol. 2016;25:1911–24.
Article
Google Scholar
Piriou E, Asito AS, Sumba PO, Fiore N. Early age at time of primary Epstein–Barr Virus infection results in poorly controlled viral infection in infants from Western Kenya: clues to the etiology of endemic. J Infect Dis. 2012;205:906–13.
Article
Google Scholar
Li H, Liu S, Hu J, Luo X, Li N, Bode AM, et al. Epstein–Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci. 2016;12:1309–18.
Article
CAS
Google Scholar
Panea RI, Love CL, Shingleton JR, Reddy A, Bailey JA, Moormann AM, et al. The whole-genome landscape of Burkitt lymphoma subtypes. Blood. 2019;134:1598–607.
Article
Google Scholar