Jeske H, Lütgemeier M, Preiss W. DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. Embo J. 2001;20(21):6158–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11(11):777–88.
Article
CAS
PubMed
Google Scholar
Abouzid AM, Frischmuth T, Jeske H. A putative replicative form of the abutilon mosaic virus (gemini group) in a chromatin-like structure. Mol Gen Genet MGG. 1988;212(2):252–8.
Article
CAS
Google Scholar
Kushwaha NK, Mansi B, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathog. 2017;13(8):e1006587.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mansoor S, Zafar Y, Briddon RW. Geminivirus disease complexes: the threat is spreading. Trends Plant Sci. 2006;11(5):209–12.
Article
CAS
PubMed
Google Scholar
Bhattacharyya D, Gnanasekaran P, Kumar RK, Kushwaha NK, Sharma VK, Yusuf MA, et al. A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J Exp Bot. 2015;66(19):5881–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, et al. ICTV virus taxonomy profile: geminiviridae. J Gen Virol. 2017;98(2):131–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawaz-ul-Rehman MS, Fauquet CM. Evolution of geminiviruses and their satellites. FEBS Lett. 2009;583(12):1825–32.
Article
CAS
PubMed
Google Scholar
Fondong VN. Geminivirus protein structure and function. Mol Plant Pathol. 2013;14(6):635–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar RV. Plant antiviral immunity against geminiviruses and viral counter-defense for survival. Front Microbiol. 2019;10:1460.
Article
PubMed
PubMed Central
Google Scholar
Ruhel R, Chakraborty S. Multifunctional roles of geminivirus encoded replication initiator protein. Virusdisease. 2019;30(1):66–73.
Article
PubMed
Google Scholar
Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D, Geraud-Pouey F, Briddon RW, et al. Characterization of non-coding DNA satellites associated with sweepoviruses (Genus Begomovirus, Geminiviridae)—definition of a distinct class of begomovirus-associated satellites. Front Microbiol. 2016;7:162.
Article
PubMed
PubMed Central
Google Scholar
Gnanasekaran P, Chakraborty S. Biology of viral satellites and their role in pathogenesis. Curr Opin Virol. 2018;33:96–105.
Article
CAS
PubMed
Google Scholar
Saunders K, Briddon RW, Stanley J. Replication promiscuity of DNA-beta satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-beta satellite localizes sequences involved in replication. J Gen Virol. 2008;89(Pt 12):3165–72.
Article
CAS
PubMed
Google Scholar
Saunders K, Stanley J. A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology. 1999;264(1):142–52.
Article
CAS
PubMed
Google Scholar
Kumar J, Kumar J, Singh SP, Tuli R. βC1 is a pathogenicity determinant: not only for begomoviruses but also for a mastrevirus. Arch Virol. 2014;159(11):3071–6.
Article
CAS
PubMed
Google Scholar
Gnanasekaran P, KishoreKumar R, Bhattacharyya D, Vinoth Kumar R, Chakraborty S. Multifaceted role of geminivirus associated betasatellite in pathogenesis. Mol Plant Pathol. 2019;20(7):1019–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saeed M, Behjatnia SA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA. A single complementary-sense transcript of a geminiviral DNA beta satellite is determinant of pathogenicity. Mol Plant Microbe Interact. 2005;18(1):7–14.
Article
CAS
PubMed
Google Scholar
Hu T, Song Y, Wang Y, Zhou X. Functional analysis of a novel βV1 gene identified in a geminivirus betasatellite. Sci China Life Sci. 2020;63(5):688–96.
Article
CAS
PubMed
Google Scholar
Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, et al. Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology. 2003;312(1):106–21.
Article
CAS
PubMed
Google Scholar
Reddy K, Bhattacharyya D, Chakraborty S. Mutational study of radish leaf curl betasatellite to understand the role of the non-coding region in begomovirus pathogenesis. Physiol Mol Plant Pathol. 2020;112:101549.
Article
CAS
Google Scholar
Vanitharani R, Chellappan P, Fauquet CM. Geminiviruses and RNA silencing. Trends Plant Sci. 2005;10(3):144–51.
Article
CAS
PubMed
Google Scholar
Zarreen F, Chakraborty S. Epigenetic regulation of geminivirus pathogenesis: a case of relentless recalibration of defence responses in plants. J Exp Bot. 2020;71(22):6890–906.
Article
CAS
PubMed
Google Scholar
Ceniceros-Ojeda EA, Rodríguez-Negrete EA, Rivera-Bustamante RF. Two populations of viral minichromosomes are present in a geminivirus-infected plant showing symptom remission (recovery). J Virol. 2016;90(8):3828–38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, Zhu JK, et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell. 2009;33(2):192–203.
Article
CAS
PubMed
Google Scholar
Jackel JN, Storer JM, Coursey T, Bisaro DM. Arabidopsis RNA polymerases IV and V are required to establish H3K9 methylation, but not cytosine methylation, on geminivirus chromatin. J Virol. 2016;90(16):7529–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2(5):E104.
Article
PubMed
PubMed Central
Google Scholar
He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, et al. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell. 2009;137(3):498–508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol. 2011;12(8):483–92.
Article
CAS
PubMed
Google Scholar
Sun YW, Tee CS, Ma YH, Wang G, Yao XM, Ye J. Attenuation of histone methyltransferase KRYPTONITE-mediated transcriptional gene silencing by geminivirus. Sci Rep. 2015;5:16476.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deleris A, Halter T, Navarro L. DNA methylation and demethylation in plant immunity. Annu Rev Phytopathol. 2016;54:579–603.
Article
CAS
PubMed
Google Scholar
Raja P, Sanville BC, Buchmann RC, Bisaro DM. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol. 2008;82(18):8997–9007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen W, Dallas MB, Goshe MB, Hanley-Bowdoin L. SnRK1 phosphorylation of AL2 delays Cabbage leaf curl virus infection in Arabidopsis. J Virol. 2014;88(18):10598–612.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang H, Hao L, Shung CY, Sunter G, Bisaro DM. Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell. 2003;15(12):3020–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang B, Li F, Huang C, Yang X, Qian Y, Xie Y, et al. V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. J Gen Virol. 2014;95(Pt 1):225–30.
Article
CAS
PubMed
Google Scholar
Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. Elife. 2020;9:e55542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Wu Y, Gong Q, Ismayil A, Yuan Y, Lian B, et al. Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4. J Virol. 2019;93(6):e01675-e1718.
CAS
PubMed
PubMed Central
Google Scholar
Mei Y, Wang Y, Li F, Zhou X. The C4 protein encoded by tomato leaf curl Yunnan virus reverses transcriptional gene silencing by interacting with NbDRM2 and impairing its DNA-binding ability. PLoS Pathog. 2020;16(10):e1008829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, et al. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell. 2011;23(1):273–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang X, Xie Y, Raja P, Li S, Wolf JN, Shen Q, et al. Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog. 2011;7(10):e1002329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang B, Yang X, Wang Y, Xie Y, Zhou X. Tomato yellow leaf curl virus V2 interacts with host histone deacetylase 6 to suppress methylation-mediated transcriptional gene silencing in plants. J Virol. 2018;92(18):e00036-e118.
Article
PubMed
PubMed Central
Google Scholar
Coursey T, Milutinovic M, Regedanz E, Brkljacic J, Bisaro DM. Arabidopsis histone reader EMSY-LIKE 1 binds H3K36 and suppresses geminivirus infection. J Virol. 2018;92(16):e00219-e318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep. 2016;6:27078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seemanpillai M, Dry I, Randles J, Rezaian A. Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant Microbe Interact. 2003;16(5):429–38.
Article
CAS
PubMed
Google Scholar
Basu S, Kumar Kushwaha N, Kumar Singh A, Pankaj Sahu P, Vinoth Kumar R, Chakraborty S. Dynamics of a geminivirus-encoded pre-coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom recovery in tobacco. J Exp Bot. 2018;69(8):2085–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prakash V, Singh A, Singh AK, Dalmay T, Chakraborty S. Tobacco RNA-dependent RNA polymerase 1 affects the expression of defence-related genes in Nicotiana benthamiana upon Tomato leaf curl Gujarat virus infection. Planta. 2020;252(1):11.
Article
CAS
PubMed
Google Scholar
Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T. RNAi targeting of DNA virus in plants. Nat Biotechnol. 2003;21(2):131–2.
Article
CAS
PubMed
Google Scholar
Rodríguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol. 2009;83(3):1332–40.
Article
PubMed
CAS
Google Scholar
Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006;22(5):268–80.
Article
CAS
PubMed
Google Scholar
Bisaro DM. Silencing suppression by geminivirus proteins. Virology. 2006;344(1):158–68.
Article
CAS
PubMed
Google Scholar
Ye J, Yang J, Sun Y, Zhao P, Gao S, Jung C, et al. Geminivirus activates ASYMMETRIC LEAVES 2 to accelerate cytoplasmic DCP2-mediated mRNA turnover and weakens RNA silencing in arabidopsis. PLoS Pathog. 2015;11(10):e1005196.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li F, Huang C, Li Z, Zhou X. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog. 2014;10(2):e1003921.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li F, Zhao N, Li Z, Xu X, Wang Y, Yang X, et al. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog. 2017;13(2):e1006213.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Dang M, Hou H, Mei Y, Qian Y, Zhou X. Identification of an RNA silencing suppressor encoded by a mastrevirus. J Gen Virol. 2014;95(Pt 9):2082–8.
Article
CAS
PubMed
Google Scholar
Eini O. A betasatellite-encoded protein regulates key components of gene silencing system in plants. Mol Biol (Mosk). 2017;51(4):656–63.
Article
CAS
Google Scholar
Ismayil A, Haxim Y, Wang Y, Li H, Qian L, Han T, et al. Cotton Leaf Curl Multan virus C4 protein suppresses both transcriptional and post-transcriptional gene silencing by interacting with SAM synthetase. PLoS Pathog. 2018;14(8):e1007282.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roeder S, Dreschler K, Wirtz M, Cristescu SM, van Harren FJ, Hell R, et al. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. Plant Mol Biol. 2009;70(5):535–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guha D, Poornima Priyadarshini CG, Purakayastha A, Thippeswamy R, Lakshmikanth M, Savithri HS. Biochemical characterization of C4 protein of Cotton leaf curl Kokhran Virus-Dabawali. Biochim Biophys Acta. 2013;1830(6):3734–44.
Article
CAS
PubMed
Google Scholar
Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. 1986;232(4751):738–43.
Article
CAS
PubMed
Google Scholar
Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, et al. Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Biotechnology (N Y). 1994;12(5):500–4.
Article
CAS
Google Scholar
Singh A, Taneja J, Dasgupta I, Mukherjee SK. Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol. 2015;16(7):724–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Namgial T, Kaldis A, Chakraborty S, Voloudakis A. Topical application of double-stranded RNA molecules containing sequences of Tomato leaf curl virus and Cucumber mosaic virus confers protection against the cognate viruses. Physiol Mol Plant Pathol. 2019;108:101432.
Article
CAS
Google Scholar
Wang J, Mei J, Ren G. Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci. 2019;10:360.
Article
PubMed
PubMed Central
Google Scholar
Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM. A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J. 2011;8:143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chellappan P, Vanitharani R, Fauquet CM. MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci U S A. 2005;102(29):10381–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miozzi L, Napoli C, Sardo L, Accotto GP. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS ONE. 2014;9(2):e89951.
Article
PubMed
PubMed Central
CAS
Google Scholar
Patwa N, Nithin C, Bahadur RP, Basak J. Identification and characterization of differentially expressed Phaseolus vulgaris miRNAs and their targets during mungbean yellow mosaic India virus infection reveals new insight into Phaseolus-MYMIV interaction. Genomics. 2019;111(6):1333–42.
Article
CAS
PubMed
Google Scholar
Xiao B, Yang X, Ye CY, Liu Y, Yan C, Wang Y, et al. A diverse set of miRNAs responsive to begomovirus-associated betasatellite in Nicotiana benthamiana. BMC Plant Biol. 2014;14:60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Naqvi AR, Choudhury NR, Mukherjee SK, Haq QM. In silico analysis reveals that several tomato microRNA/microRNA* sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol Biochem. 2011;49(1):13–7.
Article
CAS
PubMed
Google Scholar
Vu TV, Choudhury NR, Mukherjee SK. Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res. 2013;172(1–2):35–45.
Article
CAS
PubMed
Google Scholar
Akmal M, Baig MS, Khan JA. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs. J Biotechnol. 2017;263:21–9.
Article
CAS
PubMed
Google Scholar
Ramesh SV, Gupta GK, Husain SM. Soybean (Glycine max) micrornas display proclivity to repress begomovirus genomes. Curr Sci. 2016;110:424–8.
Article
Google Scholar
Kis A, Tholt G, Ivanics M, Várallyay É, Jenes B, Havelda Z. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol. 2016;17(3):427–37.
Article
CAS
PubMed
Google Scholar
Sharma N, Prasad M. Silencing AC1 of Tomato leaf curl virus using artificial microRNA confers resistance to leaf curl disease in transgenic tomato. Plant Cell Rep. 2020;39(11):1565–79.
Article
CAS
PubMed
Google Scholar
Ramesh SV, Chouhan BS, Kumar G, Praveen S, Chand S. Expression dynamics of Glycine max (L.) Merrill microRNAs (miRNAs) and their targets during Mungbean yellow mosaic India virus (MYMIV) infection. Physiol Mol Plant Pathol. 2017;100:13–22.
Article
CAS
Google Scholar
Adams EHG, Spoel SH. The ubiquitin-proteasome system as a transcriptional regulator of plant immunity. J Exp Bot. 2018;69(19):4529–37.
Article
CAS
PubMed
Google Scholar
Pauwels L, Goossens A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell. 2011;23(9):3089–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, et al. Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirus-encoded βC1. Mol Plant. 2016;9(6):911–25.
Article
CAS
PubMed
Google Scholar
Li F, Zhang M, Zhang C, Zhou X. Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. New Phytol. 2020;225(4):1746–61.
Article
CAS
PubMed
Google Scholar
Gorovits R, Moshe A, Kolot M, Sobol I, Czosnek H. Progressive aggregation of Tomato yellow leaf curl virus coat protein in systemically infected tomato plants, susceptible and resistant to the virus. Virus Res. 2013;171(1):33–43.
Article
CAS
PubMed
Google Scholar
Maio F, Arroyo-Mateos M, Bobay BG, Bejarano ER, Prins M, van den Burg HA. A lysine residue essential for geminivirus replication also controls nuclear localization of the tomato yellow leaf curl virus rep protein. J Virol. 2019;93(10):e01910-e1918.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorovits R, Czosnek H. The involvement of heat shock proteins in the establishment of tomato yellow leaf curl virus infection. Front Plant Sci. 2017;8:355.
Article
PubMed
PubMed Central
Google Scholar
Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, et al. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J. 2009;57(5):905–17.
Article
CAS
PubMed
Google Scholar
Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, et al. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing. Viruses. 2013;5(3):998–1022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lozano-Durán R, Rosas-Díaz T, Gusmaroli G, Luna AP, Taconnat L, Deng XW, et al. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell. 2011;23(3):1014–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jia Q, Liu N, Xie K, Dai Y, Han S, Zhao X, et al. CLCuMuB βC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in nicotiana benthamiana. PLoS Pathog. 2016;12(6):e1005668.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eini O, Dogra S, Selth LA, Dry IB, Randles JW, Rezaian MA. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA beta satellite. Mol Plant Microbe Interact. 2009;22(6):737–46.
Article
CAS
PubMed
Google Scholar
Camborde L, Planchais S, Tournier V, Jakubiec A, Drugeon G, Lacassagne E, et al. The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection. Plant Cell. 2010;22(9):3142–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichel C, Beachy RN. Degradation of tobacco mosaic virus movement protein by the 26S proteasome. J Virol. 2000;74(7):3330–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nair A, Chatterjee KS, Jha V, Das R, Shivaprasad PV. Stability of Begomoviral pathogenicity determinant βC1 is modulated by mutually antagonistic SUMOylation and SIM interactions. BMC Biol. 2020;18(1):110.
Article
CAS
PubMed
PubMed Central
Google Scholar
van den Burg HA, Kini RK, Schuurink RC, Takken FL. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell. 2010;22(6):1998–2016.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mazur MJ, van den Burg HA. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses. Front Plant Sci. 2012;3:215.
Article
PubMed
PubMed Central
Google Scholar
Castillo AG, Kong LJ, Hanley-Bowdoin L, Bejarano ER. Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol. 2004;78(6):2758–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez-Durán MA, Dallas MB, Ascencio-Ibañez JT, Reyes MI, Arroyo-Mateos M, Ruiz-Albert J, et al. Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J Virol. 2011;85(19):9789–800.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiong R, Wang A. SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus, is required for viral infection. J Virol. 2013;87(8):4704–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arroyo-Mateos M, Sabarit B, Maio F, Sánchez-Durán MA, Rosas-Díaz T, Prins M, et al. Geminivirus replication protein impairs SUMO conjugation of proliferating cellular nuclear antigen at two acceptor sites. J Virol. 2018;92(18):e00611-e618.
Article
PubMed
PubMed Central
Google Scholar
Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, et al. Autophagy functions as an antiviral mechanism against geminiviruses in plants. Elife. 2017;6:e23897.
Article
PubMed
PubMed Central
Google Scholar
Hafrén A, Macia JL, Love AJ, Milner JJ, Drucker M, Hofius D. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci U S A. 2017;114(10):E2026–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ismayil A, Yang M, Haxim Y, Wang Y, Li J, Han L, et al. Cotton leaf curl multan virus βC1 protein induces autophagy by disrupting the interaction of autophagy-related protein 3 with glyceraldehyde-3-phosphate dehydrogenases. Plant Cell. 2020;32(4):1124–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breiden M, Simon R. Q&A: how does peptide signaling direct plant development? BMC Biol. 2016;14:58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Santos AA, Carvalho CM, Florentino LH, Ramos HJ, Fontes EP. Conserved threonine residues within the A-loop of the receptor NIK differentially regulate the kinase function required for antiviral signaling. PLoS ONE. 2009;4(6):e5781.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen Q, Liu Z, Song F, Xie Q, Hanley-Bowdoin L, Zhou X. Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite. Plant Physiol. 2011;157(3):1394–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu T, Huang C, He Y, Castillo-González C, Gui X, Wang Y, et al. βC1 protein encoded in geminivirus satellite concertedly targets MKK2 and MPK4 to counter host defense. PLoS Pathog. 2019;15(4):e1007728.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baena-González E, Rolland F, Thevelein JM, Sheen J. A central integrator of transcription networks in plant stress and energy signalling. Nature. 2007;448(7156):938–42.
Article
PubMed
CAS
Google Scholar
Shen W, Reyes MI, Hanley-Bowdoin L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol. 2009;150(2):996–1005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen W, Hanley-Bowdoin L. Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. Plant Physiol. 2006;142(4):1642–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong X, Wang ZQ, Xiao R, Cao L, Wang Y, Xie Y, et al. Mimic phosphorylation of a βC1 protein encoded by TYLCCNB impairs its functions as a viral suppressor of RNA silencing and a symptom determinant. J Virol. 2017;91(16):e00300-e317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soto-Burgos J, Bassham DC. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLoS ONE. 2017;12(8):e0182591.
Article
PubMed
PubMed Central
Google Scholar
Son S, Oh CJ, An CS. Arabidopsis thaliana remorins interact with SnRK1 and play a role in susceptibility to beet curly top virus and beet severe curly top virus. Plant Pathol J. 2014;30(3):269–78.
Article
PubMed
PubMed Central
Google Scholar
Hao L, Wang H, Sunter G, Bisaro DM. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell. 2003;15(4):1034–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen W, Bobay BG, Greeley LA, Reyes MI, Rajabu CA, Blackburn RK, et al. Sucrose Nonfermenting 1-related protein kinase 1 phosphorylates a geminivirus rep protein to impair viral replication and infection. Plant Physiol. 2018;178(1):372–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol. 2013;51:245–66.
Article
CAS
PubMed
Google Scholar
Asano T, Nguyen TH, Yasuda M, Sidiq Y, Nishimura K, Nakashita H, et al. Arabidopsis MAPKKK δ-1 is required for full immunity against bacterial and fungal infection. J Exp Bot. 2020;71(6):2085–97.
Article
CAS
PubMed
Google Scholar
Patel A, Dey N, Chaudhuri S, Pal A. Molecular and biochemical characterization of a Vigna mungo MAP kinase associated with Mungbean Yellow Mosaic India Virus infection and deciphering its role in restricting the virus multiplication. Plant Sci. 2017;262:127–40.
Article
CAS
PubMed
Google Scholar
Li Y, Qin L, Zhao J, Muhammad T, Cao H, Li H, et al. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE. 2017;12(2):e0172466.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luan JB, Li JM, Varela N, Wang YL, Li FF, Bao YY, et al. Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol. 2011;85(7):3330–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mei Y, Wang Y, Hu T, He Z, Zhou X. The C4 protein encoded by Tomato leaf curl Yunnan virus interferes with mitogen-activated protein kinase cascade-related defense responses through inhibiting the dissociation of the ERECTA/BKI1 complex. New Phytol. 2021;231(2):747–62.
Article
PubMed
Google Scholar
Yang X, Deng F, Ramonell KM. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity. Front Biol. 2012;7(2):155–66.
Article
CAS
Google Scholar
Tena G, Boudsocq M, Sheen J. Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol. 2011;14(5):519–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mariano AC, Andrade MO, Santos AA, Carolino SM, Oliveira ML, Baracat-Pereira MC, et al. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology. 2004;318(1):24–31.
Article
CAS
PubMed
Google Scholar
Fontes EP, Santos AA, Luz DF, Waclawovsky AJ, Chory J. The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev. 2004;18(20):2545–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Zeng R, Chen Z, Liu X, Cao Z, Xie Q, et al. S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination. J Exp Bot. 2018;69(18):4459–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosas-Diaz T, Zhang D, Fan P, Wang L, Ding X, Jiang Y, et al. A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc Natl Acad Sci U S A. 2018;115(6):1388–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bi H, Fan W, Zhang P. C4 Protein of sweet potato leaf curl virus regulates brassinosteroid signaling pathway through interaction with AtBIN2 and affects male fertility in arabidopsis. Front Plant Sci. 2017;8:1689.
Article
PubMed
PubMed Central
Google Scholar
Garnelo Gómez B, Zhang D, Rosas-Díaz T, Wei Y, Macho AP, Lozano-Durán R. The C4 protein from tomato yellow leaf curl virus can broadly interact with plant receptor-like kinases. Viruses. 2019;11(11):1009.
Article
PubMed Central
CAS
Google Scholar
Mei Y, Zhang F, Wang M, Li F, Wang Y, Zhou X. Divergent symptoms caused by geminivirus-encoded C4 proteins correlate with their ability to bind NbSKη. J Virol. 2020;94(20):e01307-e1320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Florentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, et al. A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol. 2006;80(13):6648–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng R, Liu X, Yang C, Lai J. Geminivirus C4: interplaying with receptor-like kinases. Trends Plant Sci. 2018;23(12):1044–6.
Article
CAS
PubMed
Google Scholar
Gray WM. Hormonal regulation of plant growth and development. PLoS Biol. 2004;2(9):E311.
Article
PubMed
PubMed Central
CAS
Google Scholar
Corrales-Gutierrez M, Medina-Puche L, Yu Y, Wang L, Ding X, Luna AP, et al. The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol J. 2020;18(5):1121–3.
Article
CAS
PubMed
Google Scholar
Ghosh D, Chakraborty S. Molecular interplay between phytohormones and geminiviruses: a saga of a never-ending arms race. J Exp Bot. 2021.
Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148(1):436–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, et al. Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway. Plant J. 2010;62(1):12–23.
Article
CAS
PubMed
Google Scholar
Ali S, Khan M, Sahi S, Hassan M. Evaluation of plant extracts and salicylic acid against Bemisia tabaci and cotton leaf curl virus disease. Pak J Phytopathol. 2010;22:98–100.
Google Scholar
Li T, Huang Y, Xu ZS, Wang F, Xiong AS. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol. 2019;19(1):173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang JY, Iwasaki M, Machida C, Machida Y, Zhou X, Chua NH. betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev. 2008;22(18):2564–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun Y, et al. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell. 2014;26(12):4991–5008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang PJ, He YC, Zhao C, Ye ZH, Yu XP. Jasmonic acid-dependent defenses play a key role in defending tomato against bemisia tabaci nymphs, but not adults. Front Plant Sci. 2018;9:1065.
Article
PubMed
PubMed Central
Google Scholar
Naseem M, Kaltdorf M, Dandekar T. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J Exp Bot. 2015;66(16):4885–96.
Article
CAS
PubMed
Google Scholar
Vinutha T, Vanchinathan S, Bansal N, Kumar G, Permar V, Watts A, et al. Tomato auxin biosynthesis/signaling is reprogrammed by the geminivirus to enhance its pathogenicity. Planta. 2020;252(4):51.
Article
CAS
PubMed
Google Scholar
Liu Y, Liu Y, Spetz C, Li L, Wang X. Comparative transcriptome analysis in Triticum aestivum infecting wheat dwarf virus reveals the effects of viral infection on phytohormone and photosynthesis metabolism pathways. Phytopathol Res. 2020;2(1):3.
Article
Google Scholar
Baliji S, Lacatus G, Sunter G. The interaction between geminivirus pathogenicity proteins and adenosine kinase leads to increased expression of primary cytokinin-responsive genes. Virology. 2010;402(2):238–47.
Article
CAS
PubMed
Google Scholar
Park J, Lee HJ, Cheon CI, Kim SH, Hur YS, Auh CK, et al. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection. PLoS ONE. 2011;6(5):e20054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soitamo AJ, Jada B, Lehto K. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC Plant Biol. 2012;12:204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandan RK, Singh AK, Patel S, Swain DM, Tuteja N, Jha G. Silencing of tomato CTR1 provides enhanced tolerance against Tomato leaf curl virus infection. Plant Signal Behav. 2019;14(3):e1565595.
Article
PubMed
PubMed Central
CAS
Google Scholar
Krake LR, Rezaian MA, Dry IB. Expression of the tomato leaf curl geminivirus C4 gene produces viruslike symptoms in transgenic plants. Mol Plant-Microbe Interact. 1998;11(5):413–7.
Article
CAS
Google Scholar
Mills-Lujan K, Deom CM. Geminivirus C4 protein alters Arabidopsis development. Protoplasma. 2010;239(1–4):95–110.
Article
CAS
PubMed
Google Scholar
Piroux N, Saunders K, Page A, Stanley J. Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassinosteroid signalling pathway. Virology. 2007;362(2):428–40.
Article
CAS
PubMed
Google Scholar
Villa-Ruano N, Velásquez-Valle R, Zepeda-Vallejo LG, Pérez-Hernández N, Velázquez-Ponce M, Arcos-Adame VM, et al. 1)H NMR-based metabolomic profiling for identification of metabolites in Capsicum annuum cv. mirasol infected by beet mild curly top virus (BMCTV). Food Res Int. 2018;106:870–7.
Article
CAS
PubMed
Google Scholar
Mahmoudabadi G, Milo R, Phillips R. Energetic cost of building a virus. Proc Natl Acad Sci U S A. 2017;114(22):E4324–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava S, Bisht H, Sidhu OP, Srivastava A, Singh PC, Pandey RM, et al. Changes in the metabolome and histopathology of Amaranthus hypochondriacus L. in response to Ageratum enation virus infection. Phytochemistry. 2012;80:8–16.
Article
CAS
PubMed
Google Scholar
Leal N, Lastra R. Altered metabolism of tomato plants infected with tomato yellow mosaic virus. Physiol Plant Pathol. 1984;24(1):1–7.
Article
Google Scholar
Kushwaha N, Sahu PP, Prasad M, Chakraborty S. Chilli leaf curl virus infection highlights the differential expression of genes involved in protein homeostasis and defense in resistant chilli plants. Appl Microbiol Biotechnol. 2015;99(11):4757–70.
Article
CAS
PubMed
Google Scholar
Kushwaha NK, Mansi B, Sahu PP, Prasad M, Chakrabroty S. Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins. Physiol Mol Biol Plants. 2019;25(5):1185–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui H, Sun Y, Chen F, Zhang Y, Ge F. Elevated O3 and TYLCV infection reduce the suitability of tomato as a host for the whitefly bemisia tabaci. Int J Mol Sci. 2016;17(12):1964.
Article
PubMed Central
CAS
Google Scholar
Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schütz S, et al. The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol. 2009;151(2):925–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, McAuslane HJ, Schuster DJ. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. J Econ Entomol. 2004;97(4):1310–8.
Article
CAS
PubMed
Google Scholar
Luan JB, Yao DM, Zhang T, Walling LL, Yang M, Wang YJ, et al. Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol Lett. 2013;16(3):390–8.
Article
PubMed
Google Scholar
Ayliffe M, Sørensen CK. Plant nonhost resistance: paradigms and new environments. Curr Opin Plant Biol. 2019;50:104–13.
Article
PubMed
Google Scholar
Seo YS, Jeon JS, Rojas MR, Gilbertson RL. Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in common bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus. Mol Plant Pathol. 2007;8(2):151–62.
Article
CAS
PubMed
Google Scholar
Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D, Kutsher Y, et al. A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota. PLoS Genet. 2015;11(10):e1005538.
Article
PubMed
PubMed Central
CAS
Google Scholar
García-Arenal F, Zerbini FM. Life on the edge: geminiviruses at the interface between crops and wild plant hosts. Annu Rev Virol. 2019;6(1):411–33.
Article
PubMed
CAS
Google Scholar
Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RG, Scott JW, et al. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet. 2013;9(3):e1003399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RG, Bai Y, et al. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci U S A. 2014;111(35):12942–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prasanna HC, Sinha DP, Rai GK, Krishna R, Kashyap SP, Singh NK, et al. Pyramiding Ty-2 and Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathol. 2015;64(2):256–64.
Article
CAS
Google Scholar
Yamaguchi H, Ohnishi J, Saito A, Ohyama A, Nunome T, Miyatake K, et al. An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato. Theor Appl Genet. 2018;131(6):1345–62.
Article
CAS
PubMed
Google Scholar
Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, et al. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet. 2009;119(3):519–30.
Article
PubMed
Google Scholar
Gill U, Scott JW, Shekasteband R, Ogundiwin E, Schuit C, Francis DM, et al. Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against Tomato yellow leaf curl virus and Tomato mottle virus. Theor Appl Genet. 2019;132(5):1543–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji Y, Scott JW, Schuster DJ, Maxwell DP. Molecular Mapping of Ty-4, a New Tomato Yellow Leaf Curl Virus Resistance Locus on Chromosome 3 of Tomato. 2009;134(2):281.
Voorburg CM, Yan Z, Bergua-Vidal M, Wolters AA, Bai Y, Kormelink R. Ty-1, a universal resistance gene against geminiviruses that is compromised by co-replication of a betasatellite. Mol Plant Pathol. 2020;21(2):160–72.
Article
CAS
PubMed
Google Scholar
Singh RK, Rai N, Lima JM, Singh M, Singh SN, Kumar S. Genetic and molecular characterisations of Tomato leaf curl virus resistance in tomato (Solanum lycopersicum L.). J Horticult Sci Biotechnol. 2015;90(5):503–10.
Article
CAS
Google Scholar
Fregene M, Bernal A, Duque M, Dixon A, Tohme J. AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor Appl Genet. 2000;100(5):678–85.
Article
CAS
Google Scholar
Fondong VN. The search for resistance to cassava mosaic geminiviruses: how much we have accomplished, and what lies ahead. Front Plant Sci. 2017;8:408.
Article
PubMed
PubMed Central
Google Scholar
Akano O, Dixon O, Mba C, Barrera E, Fregene M. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet. 2002;105(4):521–5.
Article
CAS
PubMed
Google Scholar
Naqvi RZ, Zaidi SS, Akhtar KP, Strickler S, Woldemariam M, Mishra B, et al. Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci Rep. 2017;7(1):15880.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nazeer W, Tipu AL, Ahmad S, Mahmood K, Mahmood A, Zhou B. Evaluation of cotton leaf curl virus resistance in BC1, BC2, and BC3 progenies from an interspecific cross between Gossypium arboreum and Gossypium hirsutum. PLoS ONE. 2014;9(11):e111861.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rahman M, Hussain D, Malik TA, Zafar Y. Genetics of resistance to cotton leaf curl disease in Gossypium hirsutum. Plant Pathol. 2005;54(6):764–72.
Article
CAS
Google Scholar
Naveed K, Abbas A, Khan SA, Amrao L, Ali MA. Global status and future prospects of research in cotton leaf curl disease. Arch Phytopathol Plant Protect. 2018;51(7–8):323–37.
Article
Google Scholar
Seth T, Chattopadhyay A, Dutta S, Hazra P, Singh B. Genetic control of yellow vein mosaic virus disease in okra and its relationship with biochemical parameters. Euphytica. 2017;213(2):30.
Article
CAS
Google Scholar
Singh H, Joshi B, Khanna P, Gupta P. Breeding for field resistance to yellow vein mosaic in bhindi. Indian J Genet Plant Breed. 1962;22(2):137–44.
Google Scholar
Thakur M. Inheritance of Resistance to Yellow Vein Mosaic (YVM) in a Cross of Okra Species, Abelmoschus esculentus and A. manihot ssp, Manihot. SABRAO J. 1976;8:69–73.
Google Scholar
Dhankhar SK, Dhankhar BS, Yadava RK. Inheritance of resistance to yellow vein mosaic virus in an interspecific cross of okra (Abelmoschus esculentus). Indian J Agric Sci. 2005;75:87–9.
Google Scholar
Pullaiah N, Reddy TB, Moses GJ, Reddy BM, Reddy DR. Inheritance of resistance to yellow vein mosaic virus in okra (Abelmoschus esculentus(L.) Moench). Indian J Genet Plant Breed. 1998;58(3):349–52.
CAS
Google Scholar
Jambhale ND, Nerkar YS. Inheritance of resistance to Okra yellow vein mosaic disease in interspecific crosses of Abelmoschus. Theor Appl Genet. 1981;60(5):313–6.
Article
CAS
PubMed
Google Scholar
Sharma BR, Dhillon TS. Genetics of resistance to yellow vein mosaic virus in interspecific crosses of okra. Genet Agraria. 1983;37:267–75.
Google Scholar
Dutta OP. Breeding in Okra for Resistance to Yellow Vein Mosaic Virus and Enation Leaf Curl Virus. Annual Report, IIHR. 1984.
Blair MW, Rodriguez LM, Pedraza F, Morales F, Beebe S. Genetic mapping of the bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet. 2007;114(2):261–71.
Article
CAS
PubMed
Google Scholar
Velez JJ, Bassett MJ, Beaver JS, Molina A. Inheritance of resistance to bean golden mosaic virus in common bean. J Am Soc Horticult Sci. 1998;123(4):628.
Article
Google Scholar
Román MA, Castañeda AM, Sánchez JCA, Muñoz CGN, Beaver JS. Inheritance of normal pod development in bean golden yellow mosaic resistant common bean. J Am Soc Horticult Sci. 2004;129(4):549.
Article
Google Scholar
Monci F, García-Andrés S, Maldonado JA, Moriones E. Resistance to monopartite begomoviruses associated with the bean leaf crumple disease in phaseolus vulgaris controlled by a single dominant gene. Phytopathology. 2005;95(7):819–26.
Article
CAS
PubMed
Google Scholar
Larsen RC, Miklas PN. Generation and molecular mapping of a sequence characterized amplified region marker linked with the bct gene for resistance to beet curly top virus in common bean. Phytopathology. 2004;94(4):320–5.
Article
CAS
PubMed
Google Scholar
Islam S, Munshi AD, Mandal B, Kumar R, Behera TK. Genetics of resistance in Luffa cylindrica Roem. against Tomato leaf curl New Delhi virus. Euphytica. 2010;174(1):83–9.
Article
Google Scholar
Islam S, Anilabh Das M, Verma M, Arya L, Mandal B, Tusar Kanti B, et al. Screening of Luffa cylindrica Roem. for resistance against Tomato Leaf Curl New Delhi Virus, inheritance of resistance, and identification of SRAP markers linked to the single dominant resistance gene. J Horticult Sci Biotechnol. 2011;86(6):661–7.
Article
CAS
Google Scholar
Sáez C, Esteras C, Martínez C, Ferriol M, Dhillon NPS, López C, et al. Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Rep. 2017;36(10):1571–84.
Article
PubMed
CAS
Google Scholar
Sáez C, Martínez C, Montero-Pau J, Esteras C, Sifres A, Blanca J, et al. A major QTL located in chromosome 8 of cucurbita moschata is responsible for resistance to tomato leaf curl new Delhi virus. Front Plant Sci. 2020;11:207.
Article
PubMed
PubMed Central
Google Scholar
Moreno AB, López-Moya JJ. When viruses play team sports: mixed infections in plants. Phytopathology. 2020;110(1):29–48.
Article
CAS
PubMed
Google Scholar
Singh RP. Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis. 1993;77:1103–6.
Article
Google Scholar
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–9.
Article
CAS
PubMed
Google Scholar
Garrido-Ramirez ER, Sudarshana MR, Lucas WJ, Gilbertson RL. Bean dwarf mosaic virus BV1 protein is a determinant of the hypersensitive response and avirulence in Phaseolus vulgaris. Mol Plant Microbe Interact. 2000;13(11):1184–94.
Article
CAS
PubMed
Google Scholar
van Wezel R, Dong X, Blake P, Stanley J, Hong Y. Differential roles of geminivirus Rep and AC4 (C4) in the induction of necrosis in Nicotiana benthamiana. Mol Plant Pathol. 2002;3(6):461–71.
Article
PubMed
Google Scholar
Sharma P, Ikegami M. Tomato leaf curl Java virus V2 protein is a determinant of virulence, hypersensitive response and suppression of posttranscriptional gene silencing. Virology. 2010;396(1):85–93.
Article
CAS
PubMed
Google Scholar
Matić S, Pegoraro M, Noris E. The C2 protein of tomato yellow leaf curl Sardinia virus acts as a pathogenicity determinant and a 16-amino acid domain is responsible for inducing a hypersensitive response in plants. Virus Res. 2016;215:12–9.
Article
PubMed
CAS
Google Scholar
Mei Y, Ma Z, Wang Y, Zhou X. Geminivirus C4 antagonizes the HIR1-mediated hypersensitive response by inhibiting the HIR1 self-interaction and promoting degradation of the protein. New Phytol. 2020;225(3):1311–26.
Article
CAS
PubMed
Google Scholar
Sowden RG, Watson SJ, Jarvis P. The role of chloroplasts in plant pathology. Essays Biochem. 2018;62(1):21–39.
Article
PubMed
Google Scholar
Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. Mol Plant Pathol. 2018;19(2):504–18.
Article
PubMed
Google Scholar
Gnanasekaran P, Ponnusamy K, Chakraborty S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. Mol Plant Pathol. 2019;20(7):943–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan X, Wang H, Cai J, Li D, Song F. NAC transcription factors in plant immunity. Phytopathology Research. 2019;1(1):3.
Article
Google Scholar
Xie Q, Sanz-Burgos AP, Guo H, García JA, Gutiérrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol. 1999;39(4):647–56.
Article
CAS
PubMed
Google Scholar
Chung HY, Sunter G. Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity. Plant Mol Biol. 2014;86(1–2):185–200.
Article
CAS
PubMed
Google Scholar
Ji X, Zhang H, Zhang Y, Wang Y, Gao C. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants. 2015;1:15144.
Article
CAS
PubMed
Google Scholar
Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, et al. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants. 2015;1(10):15145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 2015;16:238.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chaparro-Garcia A, Kamoun S, Nekrasov V. Boosting plant immunity with CRISPR/Cas. Genome Biol. 2015;16:254.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mehta D, Sturchler A, Anjanappa RB, Zaidi SS, Hirsch-Hoffmann M, Gruissem W, et al. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol. 2019;20(1):80.
Article
PubMed
PubMed Central
Google Scholar
Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep. 2016;6:26912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellison EE, Nagalakshmi U, Gamo ME, Huang PJ, Dinesh-Kumar S, Voytas DF. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs (vol 6, pg 620, 2020). Nat Plants. 2021;7(1):99-.
Roy A, Zhai Y, Ortiz J, Neff M, Mandal B, Mukherjee SK, et al. Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development. PLoS ONE. 2019;14(10):e0223765.
Article
CAS
PubMed
PubMed Central
Google Scholar