Galindo I, Alonso CJV. African swine fever virus: a review. 2017;9:103.
Gogin A, Gerasimov V, Malogolovkin A, Kolbasov DJVr. African swine fever in the North Caucasus region and the Russian Federation in years 2007–2012. 2013;173:198–203.
Alejo A, Matamoros T, Guerra M, Andres G. A proteomic atlas of the African swine fever virus particle. J Virol. 2018;92:e01293-18.
Article
Google Scholar
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292:195–202.
Article
CAS
Google Scholar
Ji S, Luo Y, Zhang T, Shao L, Meng XY, Wang Y, Gao Y, Li Y, Li S, Sun Y, Jin X, Qiu HJ. An improved indirect ELISA for specific detection of antibodies against classical swine fever virus based on structurally designed E2 protein expressed in suspension mammalian cells. Arch Virol. 2018;163:1831–9.
Article
CAS
Google Scholar
Smith DM, Lunney JK, Martens GW, Ando A, Lee JH, Ho CS, Schook L, Renard C, Chardon P. Nomenclature for factors of the SLA class-I system, 2004. Tissue Antigens. 2005;65:136–49.
Article
CAS
Google Scholar
Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Røder G, Peters B, Sette A, Lund O, Buus S. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE. 2007;2:e796–e796.
Article
Google Scholar
Erup Larsen M, Kloverpris H, Stryhn A, Koofhethile CK, Sims S, Ndung’u T, Goulder P, Buus S, Nielsen M. . HLArestrictor—a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides. Immunogenetics. 2011;63:43–55.
Article
Google Scholar
Oura CAL, Edwards L, Batten CA. Virological diagnosis of African swine fever—Comparative study of available tests. Virus Res. 2013;173:150–8.
Article
CAS
Google Scholar
Yu LS, Chou SY, Wu HY, Chen YC, Chen YH. Rapid and semi-quantitative colorimetric loop-mediated isothermal amplification detection of ASFV via HSV color model transformation. J Microbiol Immunol Infect. 2020. https://doi.org/10.1016/j.jmii.2020.08.003.
Article
PubMed
PubMed Central
Google Scholar
Miao F, Zhang J, Li N, Chen T, Wang L, Zhang F, Mi L, Zhang J, Wang S, Wang Y, Zhou X, Zhang Y, Li M, Zhang S, Hu R. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting African swine fever virus. Front Microbiol. 2019;10:1004–1004.
Article
Google Scholar
Wang D, Yu J, Wang Y, Zhang M, Li P, Liu M, Liu Y. Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). J Virol Methods. 2020;276:113775.
Article
CAS
Google Scholar
Liu H, Shi K, Sun W, Zhao J, Yin Y, Si H, Qu S, Lu W. Development a multiplex RT-PCR assay for simultaneous detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. J Virol Methods. 2020;287:114006.
Article
Google Scholar
Woźniakowski G, Frączyk M, Kowalczyk A, Pomorska-Mól M, Niemczuk K, Pejsak Z. Polymerase cross-linking spiral reaction (PCLSR) for detection of African swine fever virus (ASFV) in pigs and wild boars. Sci Rep. 2017;7:42903.
Article
Google Scholar
Cubillos C, Gómez-Sebastian S, Moreno N, Nuñez MC, Mulumba-Mfumu LK, Quembo CJ, Heath L, Etter EM, Jori F, Escribano JM. African swine fever virus serodiagnosis: a general review with a focus on the analyses of African serum samples. Virus Res. 2013;173:159–67.
Article
CAS
Google Scholar
Gallardo C, Soler A, Nieto R, Carrascosa AL, De Mia GM, Bishop RP, Martins C, Fasina FO, Couacy-Hymman E, Heath L, Pelayo V, Martín E, Simón A, Martín R, Okurut AR, Lekolol I, Okoth E, Arias M. Comparative evaluation of novel African swine fever virus (ASF) antibody detection techniques derived from specific ASF viral genotypes with the OIE internationally prescribed serological tests. Vet Microbiol. 2013;162:32–43.
Article
CAS
Google Scholar
Arega AM, Pattanaik KP, Nayak S, Mahapatra RK. Computational discovery and ex-vivo validation study of novel antigenic vaccine candidates against tuberculosis. Acta Trop. 2021. https://doi.org/10.1016/j.actatropica.2021.105870:105870.
Article
PubMed
Google Scholar
Mulpuru V, Mishra N. Immunoinformatic based identification of cytotoxic T lymphocyte epitopes from the Indian isolate of SARS-CoV-2. Sci Rep. 2021;11:4516.
Article
CAS
Google Scholar
Sadat SM, Aghadadeghi MR, Yousefi M, Khodaei A, Sadat Larijani M, Bahramali G. Bioinformatics analysis of SARS-CoV-2 to approach an effective vaccine candidate against COVID-19. Mol Biotechnol. 2021. https://doi.org/10.1007/s12033-021-00303-0:1-21.
Article
PubMed
PubMed Central
Google Scholar
Oviedo JM, Rodríguez F, Gómez-Puertas P, Brun A, Gómez N, Alonso C, Escribano JM. High level expression of the major antigenic African swine fever virus proteins p54 and p30 in baculovirus and their potential use as diagnostic reagents. J Virol Methods. 1997;64:27–35.
Article
CAS
Google Scholar
Chen C, Hua D, Shi J, Tan Z, Zhu M, Tan K, Zhang L, Huang J. Porcine immunoglobulin Fc fused P30/P54 protein of African swine fever virus displaying on surface of S. cerevisiae elicit strong antibody production in swine. Virol Sin. 2020. https://doi.org/10.1007/s12250-020-00278-3.
Article
PubMed
PubMed Central
Google Scholar
Gómez-Puertas P, Rodríguez F, Oviedo JM, Ramiro-Ibáñez F, Ruiz-Gonzalvo F, Alonso C, Escribano JM. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol. 1996;70:5689–94.
Article
Google Scholar
Afonso CL, Alcaraz C, Brun A, Sussman MD, Onisk DV, Escribano JM, Rock DL. Characterization of P30, a highly antigenic membrane and secreted protein of African Swine Fever Virus. Virology. 1992;189:368–73.
Article
CAS
Google Scholar
Gomez-Puertas P, Rodriguez F, Oviedo JM, Ramiro-Ibanez F, Ruiz-Gonzalvo F, Alonso C, Escribano JM. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol. 1996;70:5689–94.
Article
CAS
Google Scholar
Oviedo JM, Rodriguez F, Gómez-Puertas P, Brun A, Gómez N, Alonso C, Escribano JM. High level expression of the major antigenic African swine fever virus proteins p54 and p30 in baculovirus and their potential use as diagnostic reagents. J Virol Methods. 1997;64:27–35.
Article
CAS
Google Scholar
Eblé PL, Hagenaars TJ, Weesendorp E, Quak S, Moonen-Leusen HW, Loeffen WLA. Transmission of African Swine Fever Virus via carrier (survivor) pigs does occur. Vet Microbiol. 2019;237:108345.
Article
Google Scholar
Petrovan V, Murgia MV, Wu P, Lowe AD, Jia W, Rowland RRR. Epitope mapping of African swine fever virus (ASFV) structural protein, p54. Virus Res. 2020;279:197871.
Article
CAS
Google Scholar
Wu P, Lowe AD, Rodríguez YY, Murgia MV, Dodd KA, Rowland RR, Jia W. Antigenic regions of African swine fever virus phosphoprotein P30. Transbound Emerg Dis. 2020. https://doi.org/10.1111/tbed.13533.
Article
PubMed
PubMed Central
Google Scholar
Murgia MV, Mogler M, Certoma A, Green D, Monaghan P, Williams DT, Rowland RRR, Gaudreault NN. Evaluation of an African swine fever (ASF) vaccine strategy incorporating priming with an alphavirus-expressed antigen followed by boosting with attenuated ASF virus. Arch Virol. 2019;164:359–70.
Article
CAS
Google Scholar