UNAIDS DATA 2017. http://www.unaids.org/en/resources/documents/2017/2017_data_book. .
Habibi P, Daniell H, Soccol CR, Grossi-de-Sa MF. The potential of plant systems to break the HIV-TB link. Plant Biotechnol J. 2019;17:1868.
Article
PubMed
PubMed Central
Google Scholar
Updated_NTD_report2011_CS3_ok.indd. 2011;:25.
Feldmann H, Jones S, Klenk H-D, Schnittler H-J. Timeline: Ebola virus: from discovery to vaccine. Nat Rev Immunol. 2003;3:677.
Article
CAS
PubMed
Google Scholar
Ebola virus disease. World Health Organization. http://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease. Accessed 10 Jul 2019.
WHO | Malaria in pregnant women. WHO. http://www.who.int/malaria/areas/high_risk_groups/pregnancy/en/. Accessed 18 Jul 2019.
Hefferon K. Plant virus expression vectors: a powerhouse for Global Health. Biomedicines. 2017;5:44.
Article
PubMed Central
CAS
Google Scholar
Rybicki EP. Plant-based vaccines against viruses. Virol J. 2014;11:205.
Article
PubMed
PubMed Central
CAS
Google Scholar
Daniell H, Kulis M, Herzog RW. Plant cell-made protein antigens for induction of Oral tolerance. Biotechnol Adv. 2019. https://doi.org/10.1016/j.biotechadv.2019.06.012.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ibrahim A, Odon V, Kormelink R. Plant viruses in plant molecular pharming: toward the use of enveloped viruses. Front Plant Sci. 2019;10:803.
Article
PubMed
PubMed Central
Google Scholar
Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol. 2000;18:1151.
Article
CAS
PubMed
Google Scholar
MDG Report 2010 En 20100604 r14 Final.indd. Millenn Dev GOALS Rep. 2010:80.
Daniell H, Streatfield SJ, Rybicki EP. Advances in molecular farming: key technologies, scaled up production and lead targets. Plant Biotechnol J. 2015;13:1011.
Article
PubMed
PubMed Central
Google Scholar
Daniell H, Rai V, Xiao Y. Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. Plant Biotechnol J. 2019;17:1357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindbo JA. TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol. 2007;145:1232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hefferon K. Plant virus expression vector development: new perspectives. Biomed Res Int. 2014. https://doi.org/10.1155/2014/785382.
Article
Google Scholar
Daniell H, Singh ND, Mason H, Streatfield SJ. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci. 2009;14:669.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JH, Ko K. Production of recombinant anti-Cancer vaccines in plants. Biomol Ther. 2017;25:345.
Article
CAS
Google Scholar
Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20:522.
Article
CAS
PubMed
Google Scholar
Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases 2004;430:8.
Xu K, Evans DB, Carrin G, Aguilar-Rivera AM, Musgrove P, Evans T. Protecting Households From Catastrophic Health Spending. Health Aff (Millwood). 2007;26:972.
Article
Google Scholar
Mason HS, Lam DM, Arntzen CJ. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci. 1992;89:11745.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, et al. Expression of the rabies virus glycoprotein in transgenic tomatoes. Nat Biotechnol. 1995;13:1484.
Article
CAS
Google Scholar
Thanavala Y, Yang YF, Lyons P, Mason HS, Arntzen C. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc Natl Acad Sci. 1995;92:3358.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter LJ, Thanavala Y, Arntzen CJ, Mason HS. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol. 2000;18:1167.
Article
CAS
PubMed
Google Scholar
Wigdorovitz A, Carrillo C, Dus Santos MJ, Trono K, Peralta A, Gómez MC, et al. Induction of a protective antibody response to foot and mouth disease virus in mice following Oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virology. 1999;255:347.
Article
CAS
PubMed
Google Scholar
Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L. Comparative evaluation of recombinant protein production in different biofactories: the green perspective. Biomed Res Int. 2014;2014:1.
Article
CAS
Google Scholar
Sparrow P, Broer I, Hood E, Eversole K, Hartung F, Schiemann J. Risk assessment and regulation of molecular farming - a comparison between Europe and US. Curr Pharm Des. 2013;19:5513.
Article
CAS
PubMed
Google Scholar
Yao J, Weng Y, Dickey A, Wang K. Plants as factories for human pharmaceuticals: applications and challenges. Int J Mol Sci. 2015;16:28549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breyer D, Goossens M, Herman P, Sneyers M. Biosafety considerations associated with molecular farming in genetically modified plants. J Med Plants Res. 2009;3:825.
Google Scholar
Ahmad K. Molecular farming: strategies, expression systems and bio-safety considerations. Czech J Genet Plant Breed. 2014;50:1–1.
Article
Google Scholar
Kapila J, De Rycke R, Van Montagu M, Angenon G. An agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 1997;122:101.
Article
CAS
Google Scholar
Porceddu A, Falorni A, Ferradini N, Cosentino A, Calcinaro F, Faleri C, et al. Transgenic plants expressing human glutamic acid decarboxylase (GAD65), a major autoantigen in insulin-dependent diabetes mellitus. Mol Breed. 1999;5:553.
Article
CAS
Google Scholar
Zhang X, Buehner NA, Hutson AM, Estes MK, Mason HS. Tomato is a highly effective vehicle for expression and oral immunization with Norwalk virus capsid protein. Plant Biotechnol J. 2006;4:419.
Article
CAS
PubMed
Google Scholar
Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L, −Abanto SH, et al. Rapid High-Level Production of Functional HIV Broadly Neutralizing Monoclonal Antibodies in Transient Plant Expression Systems PLoS One 2013;8:e58724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Souza AC, Vasques RM, Inoue-Nagata AK, Lacorte C, Maldaner FR, Noronha EF, et al. Expression and assembly of Norwalk virus-like particles in plants using a viral RNA silencing suppressor gene. Appl Microbiol Biotechnol. 2013;97:9021.
Article
CAS
PubMed
Google Scholar
Jones RM, Chichester JA, Manceva S, Gibbs SK, Musiychuk K, Shamloul M, et al. A novel plant-produced Pfs25 fusion subunit vaccine induces long-lasting transmission blocking antibody responses. Hum Vaccines Immunother. 2015;11:124.
Article
Google Scholar
Zahin M, Joh J, Khanal S, Husk A, Mason H, Warzecha H, et al. Scalable production of HPV16 L1 protein and VLPs from tobacco leaves. PLoS One. 2016;11. https://doi.org/10.1371/journal.pone.0160995.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mardanova ES, Blokhina EA, Tsybalova LM, Peyret H, Lomonossoff GP, Ravin NV. Efficient transient expression of recombinant proteins in plants by the novel pEff vector based on the genome of potato virus X. Front Plant Sci. 2017;8:247.
Article
PubMed
PubMed Central
Google Scholar
Lacombe S, Bangratz M, Brizard J-P, Petitdidier E, Pagniez J, Sérémé D, et al. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana , a potential anti-leishmaniasis vaccine candidate. J Biosci Bioeng. 2018;125:116.
Article
CAS
PubMed
Google Scholar
Chabeda A, van Zyl AR, Rybicki EP, Hitzeroth II. Substitution of human papillomavirus type 16 L2 neutralizing epitopes into L1 surface loops: the effect on virus-like particle assembly and immunogenicity. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00779.
Johansen LK. Silencing on the spot. Induction and suppression of rna silencing in the agrobacterium-mediated transient expression system. PLANT Physiol. 2001;126:930.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006;22:268.
Article
CAS
PubMed
Google Scholar
Incarbone M, Dunoyer P. RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci. 2013;18:382.
Article
CAS
PubMed
Google Scholar
Lombardi R, Circelli P, Villani M, Buriani G, Nardi L, Coppola V, et al. High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of artichoke mottled Crinckle virus. BMC Biotechnol. 2009;9:96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garabagi F, Gilbert E, Loos A, McLean MD, Hall JC. Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts. Plant Biotechnol J. 2012;10:1118.
Article
CAS
PubMed
Google Scholar
Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol. 2007;18:134.
Article
CAS
PubMed
Google Scholar
Yusibov V, Shivprasad S, Turpen TH, Dawson W, Koprowski H. Plant Viral Vectors Based on Tobamoviruses. In: Hammond J, McGarvey P, Yusibov V, editors. Plant Biotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2000. p. 81–94. doi:https://doi.org/10.1007/978-3-642-60234.
Turpen TH. Tobacco mosaic virus and the virescence of biotechnology. Philos Trans R Soc B Biol Sci. 1999;354:665.
Article
CAS
Google Scholar
Uhde-Holzem K, Schlösser V, Viazov S, Fischer R, Commandeur U. Immunogenic properties of chimeric potato virus X particles displaying the hepatitis C virus hypervariable region I peptide R9. J Virol Methods. 2010;166:12.
Article
CAS
PubMed
Google Scholar
Mardanova ES, Kotlyarov RY, Kuprianov VV, Stepanova LA, Tsybalova LM, Lomonosoff GP, et al. Rapid high-yield expression of a candidate influenza vaccine based on the ectodomain of M2 protein linked to flagellin in plants using viral vectors. BMC Biotechnol. 2015;15. https://doi.org/10.1186/s12896-015-0164-6.
Denis J, Majeau N, Acosta-Ramirez E, Savard C, Bedard M-C, Simard S, et al. Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology. 2007;363:59.
Article
CAS
PubMed
Google Scholar
Denis J, Acosta-Ramirez E, Zhao Y, Hamelin M-E, Koukavica I, Baz M, et al. Development of a universal influenza a vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine. 2008;26:3395.
Article
CAS
PubMed
Google Scholar
Noris E, Poli A, Cojoca R, Rittà M, Cavallo F, Vaglio S, et al. A human papillomavirus 8 E7 protein produced in plants is able to trigger the mouse immune system and delay the development of skin lesions. Arch Virol. 2011;156:587.
Article
CAS
PubMed
Google Scholar
Musiychuk K, Stephenson N, Bi H, Farrance CE, Orozovic G, Brodelius M, et al. A launch vector for the production of vaccine antigens in plants: plant-produced vaccines. Influenza Other Respir Viruses. 2007;1:19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Kearney CM. A tobamovirus expression vector for agroinfection of legumes and Nicotiana. J Biotechnol. 2010;147:151.
Article
CAS
PubMed
Google Scholar
Steinmetz NF, Cho C-F, Ablack A, Lewis JD, Manchester M. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomed. 2011;6:351.
Article
CAS
Google Scholar
Rybicki EP, Martin DP. Virus-derived ssDNA vectors for the expression of foreign proteins in plants. Curr Top Microbiol Immunol. 2014;375:19.
CAS
PubMed
Google Scholar
Regnard GL, Halley-Stott RP, Tanzer FL, Hitzeroth II, Rybicki EP. High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J. 2010;8:38.
Article
CAS
PubMed
Google Scholar
Chung HY, Lee HH, Kim KI, Chung HY, Hwang-Bo J, Park JH, et al. Expression of a recombinant chimeric protein of hepatitis a virus VP1-fc using a replicating vector based on beet curly top virus in tobacco leaves and its immunogenicity in mice. Plant Cell Rep. 2011;30:1513.
Article
CAS
PubMed
Google Scholar
Dugdale B, Mortimer CL, Kato M, James TA, Harding RM, Dale JL. In plant activation: an inducible, Hyperexpression Platform for Recombinant Protein Production in Plants. Plant Cell. 2013;25:2429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kagale S, Uzuhashi S, Wigness M, Bender T, Yang W, Borhan MH, et al. TMV-gate vectors: gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins. Sci Rep. 2012;2. https://doi.org/10.1038/srep00874.
Turpen T, Reinl S, Charoenvit Y, Hoffman S, Fallarme V, Grill L. Malarial epitopes expressed on the surface of recombinant tobacco mosaic-virus. Bio-Technol. 1995;13:53.
CAS
Google Scholar
Webster DE, Wang L, Mulcair M, Ma C, Santi L, Mason HS, et al. Production and characterization of an orally immunogenic Plasmodium antigen in plants using a virus-based expression system. Plant Biotechnol J. 2009;7:846.
Article
CAS
PubMed
Google Scholar
Gleba Y, Marillonnet S, Klimyuk V. Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol. 2004;7:182.
Article
CAS
PubMed
Google Scholar
Avesani L, Marconi G, Morandini F, Albertini E, Bruschetta M, Bortesi L, et al. Stability of potato virus X expression vectors is related to insert size: implications for replication models and risk assessment. Transgenic Res. 2007;16:587.
Article
CAS
PubMed
Google Scholar
Gleba Y, Klimyuk V, Marillonnet S. Magnifection?A new platform for expressing recombinant vaccines in plants. Vaccine. 2005;23:2042.
Article
CAS
PubMed
Google Scholar
Liu L, Lomonossoff GP. Agroinfection as a rapid method for propagating cowpea mosaic virus-based constructs. J Virol Methods. 2002;105:343.
Article
CAS
PubMed
Google Scholar
J√ottner G, Baulcombe DC, Fedorkin ON, Schiemann J, Atabekov JG, Morozov SYu. Complementation of a potato virus X mutant mediated by bombardment of plant tissues with cloned viral movement protein genes. J Gen Virol. 1997;78:2077.
Ziegler-Graff V, Guilford PJ, Baulcombe DC. Tobacco rattle virus RNA-1 29K gene product potentiates viral movement and also affects symptom induction in tobacco. Virology. 1991;182:145.
Article
CAS
PubMed
Google Scholar
Deom CM, Oliver MJ, Beachy RN. The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science. 1987;237:389.
Article
CAS
PubMed
Google Scholar
Kaplan IB, Shintaku MH, Li Q, Zhang L, Marsh LE, Palukaitis P. Complementation of virus movement in transgenic tobacco expressing the cucumber mosaic virus 3a gene. Virology. 1995;209:188.
Article
CAS
PubMed
Google Scholar
van der Kuyl AC, Neeleman L, Bol JF. Complementation and recombination between alfalfa mosaic virus RNA3 mutants in tobacco plants. Virology. 1991;183:731.
Article
PubMed
Google Scholar
Le DHT, Hu H, Commandeur U, Steinmetz NF. Chemical addressability of potato virus X for its applications in bio/nanotechnology. J Struct Biol. 2017;200:360.
Article
CAS
PubMed
Google Scholar
Saunders K, Sainsbury F, Lomonossoff GP. Efficient generation of cowpea mosaicvirus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology. 2009;393:329.
Article
CAS
PubMed
Google Scholar
Gonzalez MJ, Plummer EM, Rae CS, Manchester M. Interaction of cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. PLoS One. 2009;4:e7981.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ren Y, Wong SM, Lim L-Y. Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjug Chem. 2007;18:836.
Article
CAS
PubMed
Google Scholar
Franke CE, Czapar AE, Patel RB, Steinmetz NF. Tobacco mosaic virus-delivered Cisplatin restores efficacy in platinum-resistant ovarian Cancer cells. Mol Pharm. 2018;15:2922.
Article
CAS
PubMed
Google Scholar
Babin C, Majeau N, Leclerc D. Engineering of papaya mosaic virus (PapMV) nanoparticles with a CTL epitope derived from influenza NP. J Nanobiotechnology. 2013;11:10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lebel M-È, Chartrand K, Tarrab E, Savard P, Leclerc D, Lamarre A. Potentiating Cancer immunotherapy using papaya mosaic virus-derived nanoparticles. Nano Lett. 2016;16:1826.
Article
CAS
PubMed
Google Scholar
Madden AJ, Oberhardt B, Lockney D, Santos C, Vennam P, Arney D, et al. Pharmacokinetics and efficacy of doxorubicin-loaded plant virus nanoparticles in preclinical models of cancer. Nanomed. 2017;12:2519.
Article
CAS
Google Scholar
Narayanan KB, Han SS. Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures. Adv Colloid Interf Sci. 2017;248:1.
Article
CAS
Google Scholar
Massa S, Franconi R, Brandi R, Muller A, Mett V, Yusibov V, et al. Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine. 2007;25:3018.
Article
CAS
PubMed
Google Scholar
Hamorsky KT, Grooms-Williams TW, Husk AS, Bennett LJ, Palmer KE, Matoba N. Efficient single tobamoviral vector-based bioproduction of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 in Nicotiana benthamiana plants and utility of VRC01 in combination microbicides. Antimicrob Agents Chemother. 2013;57:2076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohammadzadeh S, Roohvand F, Memarnejadian A, Jafari A, Ajdary S, Salmanian A-H, et al. Co-expression of hepatitis C virus polytope–HBsAg and p19-silencing suppressor protein in tobacco leaves. Pharm Biol. 2016;54:465.
Article
CAS
PubMed
Google Scholar
Shukla S, Ablack AL, Wen AM, Lee KL, Lewis JD, Steinmetz NF. Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle Potato virus X. Mol Pharm. 2013;10:33.
Article
CAS
PubMed
Google Scholar
Demurtas OC, Massa S, Illiano E, De Martinis D, Chan PKS, Di Bonito P, et al. Antigen production in plant to tackle infectious diseases flare up: the case of SARS. Front Plant Sci. 2016;7. https://doi.org/10.3389/fpls.2016.00054.
Sainsbury F, Lavoie P-O, D’Aoust M-A, Vézina L-P, Lomonossoff GP. Expression of multiple proteins using full-length and deleted versions of cowpea mosaic virus RNA-2. Plant Biotechnol J. 2007;0:071107010736001.
Article
CAS
Google Scholar
Mardanova ES, Kotlyarov RY, Kuprianov VV, Stepanova LA, Tsybalova LM, Lomonossoff GP, et al. High immunogenicity of plant-produced candidate influenza vaccine based on the M2e peptide fused to flagellin. Bioengineered. 2016;7:28.
Article
CAS
PubMed
Google Scholar
Sainsbury F, Thuenemann EC, Lomonossoff GP. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J. 2009;7:682.
Article
CAS
PubMed
Google Scholar
Montague NP, Thuenemann EC, Saxena P, Saunders K, Lenzi P, Lomonossoff GP. Recent advances of cowpea mosaic virus-based particle technology. Hum Vaccin. 2011;7:383.
Article
CAS
PubMed
Google Scholar
Meshcheriakova YA, Saxena P, Lomonossoff GP. Fine-tuning levels of heterologous gene expression in plants by orthogonal variation of the untranslated regions of a nonreplicating transient expression system. Plant Biotechnol J. 2014;12:718.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Kedzierski L, Wesselingh SL, Coppel RL. Oral immunization with a recombinant malaria protein induces conformational antibodies and protects mice against lethal malaria. Infect Immun. 2003;71:2356.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herzog RW, Nichols TC, Su J, Zhang B, Sherman A, Merricks EP, et al. Oral tolerance induction in hemophilia B dogs fed with Transplastomic lettuce. Mol Ther. 2017;25:512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su J, Zhu L, Sherman A, Wang X, Lin S, Kamesh A, et al. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials. 2015;70:84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosales-Mendoza S, Rubio-Infante N, Govea-Alonso DO, Moreno-Fierros L. Current status and perspectives of plant-based candidate vaccines against the human immunodeficiency virus (HIV). Plant Cell Rep. 2012;31:495.
Article
CAS
PubMed
Google Scholar
Walker BD, Burton DR. Toward an AIDS vaccine. Science. 2008;320:760.
Article
CAS
PubMed
Google Scholar
Fauci AS, Johnston MI, Dieffenbach CW, Burton DR, Hammer SM, Hoxie JA, et al. HIV vaccine research: the way forward. Science. 2008;321:530.
Article
CAS
PubMed
Google Scholar
Goepfert PA, Tomaras GD, Horton H, Montefiori D, Ferrari G, Deers M, et al. Durable HIV-1 antibody and T-cell responses elicited by an adjuvanted multi-protein recombinant vaccine in uninfected human volunteers. Vaccine. 2007;25:510.
Article
CAS
PubMed
Google Scholar
Voss G, Manson K, Montefiori D, Watkins DI, Heeney J, Wyand M, et al. Prevention of disease induced by a partially heterologous AIDS virus in rhesus monkeys by using an Adjuvanted multicomponent protein vaccine. J Virol. 2003;77:1049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maggiorella MT, Sernicola L, Crostarosa F, Belli R, Pavone-Cossut MR, Macchia I, et al. Multiprotein genetic vaccine in the SIV-Macaca animal model: a promising approach to generate sterilizing immunity to HIV infection. J Med Primatol. 2007;36:180.
Article
CAS
PubMed
Google Scholar
Habibi P, Soccol CR, O’Keefe BR, Krumpe LRH, Wilson J, de Macedo LLP, et al. Gene-silencing suppressors for high-level production of the HIV-1 entry inhibitor griffithsin in Nicotiana benthamiana. Process Biochem. 2018;70:45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ataie Kachoie E, Behjatnia SAA, Kharazmi S. Expression of human immunodeficiency virus type 1 (HIV-1) coat protein genes in plants using cotton leaf curl Multan betasatellite-based vector. PLoS One. 2018;13:e0190403.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marusic C, Vitale A, Pedrazzini E, Donini M, Frigerio L, Bock R, et al. Plant-based strategies aimed at expressing HIV antigens and neutralizing antibodies at high levels. Nef as a case study Transgenic Res. 2009;18:499.
CAS
PubMed
Google Scholar
Orellana-Escobedo L, Rosales-Mendoza S, Romero-Maldonado A, Parsons J, Decker EL, Monreal-Escalante E, et al. An Env-derived multi-epitope HIV chimeric protein produced in the moss Physcomitrella patens is immunogenic in mice. Plant Cell Rep. 2015;34:425.
Article
CAS
PubMed
Google Scholar
Karasev AV, Foulke S, Wellens C, Rich A, Shon KJ, Zwierzynski I, et al. Plant based HIV-1 vaccine candidate: tat protein produced in spinach. Vaccine. 2005;23:1875.
Article
CAS
PubMed
Google Scholar
Barbante A, Irons S, Hawes C, Frigerio L, Vitale A, Pedrazzini E. Anchorage to the cytosolic face of the endoplasmic reticulum membrane: a new strategy to stabilize a cytosolic recombinant antigen in plants. Plant Biotechnol J. 2008;6:560.
Article
CAS
PubMed
Google Scholar
Gosling R, von Seidlein L. The future of the rts,s/as01 malaria vaccine: an alternative development plan. PLoS Med. 2016;13. https://doi.org/10.1371/journal.pmed.1001994.
Article
PubMed
PubMed Central
Google Scholar
Dobaño C, Ubillos I, Jairoce C, Gyan B, Vidal M, Jiménez A, et al. RTS,S/AS01E immunization increases antibody responses to vaccine-unrelated Plasmodium falciparum antigens associated with protection against clinical malaria in African children: a case-control study. BMC Med. 2019;17:157.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang L, Webster DE, Campbell AE, Dry IB, Wesselingh SL, Coppel RL. Immunogenicity of Plasmodium yoelii merozoite surface protein 4/5 produced in transgenic plants. Int J Parasitol. 2008;38:103.
Article
CAS
PubMed
Google Scholar
Ma C, Wang L, Webster DE, Campbell AE, Coppel RL. Production, characterisation and immunogenicity of a plant-made Plasmodium antigen—the 19 kDa C-terminal fragment of Plasmodium yoelii merozoite surface protein 1. Appl Microbiol Biotechnol. 2012;94:151.
Article
CAS
PubMed
Google Scholar
Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, et al. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J. 2010;8:223.
Article
CAS
PubMed
Google Scholar
Lee C, Kim H-H, Mi Choi K, Won Chung K, Choi Y, Jang M, et al. Murine immune responses to a Plasmodium vivax-derived chimeric recombinant protein expressed in Brassica napus. Malar J. 2011;10:106.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO | Deworming for Health and Development: Report of the third global meeting of the partners for parasite control. WHO. http://www.who.int/schistosomiasis/resources/WHO_CDS_CPE_PVC_2005.14/en/. Accessed 18 Sep 2019.
Cox JH, Dietzschold B, Schneider LG. Rabies virus glycoprotein. II. Biological and serological characterization. Infect Immun. 1977;16:754.
Batista FRX, Moraes ÂM, Büntemeyer H, Noll T. Influence of culture conditions on recombinant Drosophila melanogaster S2 cells producing rabies virus glycoprotein cultivated in serum-free medium. Biologicals. 2009;37:108.
Article
CAS
PubMed
Google Scholar
Ben Azoun S, Belhaj AE, Göngrich R, Gasser B, Kallel H. Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris. Microb Biotechnol. 2016;9:355.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramya R, Mohana Subramanian B, Sivakumar V, Senthilkumar RL, Sambasiva Rao KRS, Srinivasan VA. Expression and Solubilization of insect cell-based rabies virus glycoprotein and assessment of its immunogenicity and protective efficacy in mice. Clin Vaccine Immunol. 2011;18:1673.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yadav AS, Gahlot K, Gahlot GC, Asraf M, Yadav ML. Microsatellite DNA typing for assessment of genetic variability in Marwari breed of Indian goat. Vet World. 2015;8:848.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiwari S, Mishra DK, Roy S, Singh A, Singh PK, Tuli R. High level expression of a functionally active cholera toxin B: rabies glycoprotein fusion protein in tobacco seeds. Plant Cell Rep. 2009;28:1827.
Article
CAS
PubMed
Google Scholar
Shakin-Eshleman SH, Remaley AT, Eshleman JR, Wunner WH, Spitalnik SL. N-linked glycosylation of rabies virus glycoprotein. Individual sequons differ in their glycosylation efficiencies and influence on cell surface expression. J Biol Chem. 1992;267:10690.
CAS
PubMed
Google Scholar
Yusibov V, Modelska A, Steplewski K, Agadjanyan M, Weiner D, Hooper DC, et al. Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc Natl Acad Sci. 1997;94:5784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strauss S. Ebola research fueled by bioterrorism threat. Can Med Assoc J. 2014;186:1206.
Article
Google Scholar
Arntzen C. Plant-made pharmaceuticals: from ‘edible vaccines’ to Ebola therapeutics. Plant Biotechnol J. 2015;13:1013.
Article
PubMed
PubMed Central
Google Scholar
Phoolcharoen W, Bhoo SH, Lai H, Ma J, Arntzen CJ, Chen Q, et al. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana: Ebola immune complex expression. Plant Biotechnol J. 2011;9:807.
Article
CAS
PubMed
Google Scholar
Lai H, He J, Engle M, Diamond MS, Chen Q. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce: vaccine and antibody expression in lettuce. Plant Biotechnol J. 2012;10:95.
Article
CAS
PubMed
Google Scholar
Saejung W, Fujiyama K, Takasaki T, Ito M, Hori K, Malasit P, et al. Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine. 2007;25:6646.
Article
CAS
PubMed
Google Scholar
Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer. 1999;80:827.
Article
CAS
PubMed
Google Scholar
Yanofsky VR, Patel RV, Goldenberg G. Genital warts: a comprehensive review. J Clin Aesthetic Dermatol. 2012;5:25.
Google Scholar
Steben M, Duarte-Franco E. Human papillomavirus infection: epidemiology and pathophysiology. Gynecol Oncol. 2007;107(2 Suppl 1):S2–5.
Article
CAS
PubMed
Google Scholar
Gross G, Pfister H. Role of human papillomavirus in penile cancer, penile intraepithelial squamous cell neoplasias and in genital warts. Med Microbiol Immunol (Berl). 2004;193:35.
Article
CAS
Google Scholar
Thomas R, Steben M, Greenwald Z, Stutz M, Rodier C, DeAngelis F, et al. Recurrence of human papillomavirus external genital wart infection among high-risk adults in Montréal. Canada Sex Transm Dis. 2017;44:700.
Article
PubMed
Google Scholar
Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12.
Article
CAS
PubMed
Google Scholar
Ouedraogo RA, Zohoncon TM, Guigma SP, Angèle Traore IM, Ouattara AK, Ouedraogo M, et al. Oncogenic human papillomavirus infection and genotypes characterization among sexually active women in Tenkodogo at Burkina Faso. West Africa Papillomavirus Res. 2018;6:22.
Article
PubMed
Google Scholar
Naud PS, Roteli-Martins CM, De Carvalho NS, Teixeira JC, de Borba PC, Sanchez N, et al. Sustained efficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine: final analysis of a long-term follow-up study up to 9.4 years post-vaccination. Hum Vaccines Immunother. 2014;10:2147.
Article
Google Scholar
Huh WK, Joura EA, Giuliano AR, Iversen O-E, de Andrade RP, Ault KA, et al. Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16-26 years: a randomised, double-blind trial. Lancet Lond Engl. 2017;390:2143.
Article
CAS
Google Scholar
Traore IMA, Zohoncon TM, Dembele A, Djigma FW, Obiri-Yeboah D, Traore G, et al. Molecular characterization of high-risk human papillomavirus in women in Bobo-Dioulasso. Burkina Faso BioMed Res Int. 2016;2016:7092583.
PubMed
Google Scholar
CMR O, Djigma FW, Bisseye C, Sagna T, Zeba M, Ouermi D, et al. Epidemiology, characterization of genotypes of human papillomavirus in a population of women in Ouagadougou. J Gynecol Obstet Biol Reprod (Paris). 2011;40:633.
Article
Google Scholar
Ouédraogo C, Zohoncon TM, Traoré E, Ouattara S, Bado P, Ouedraogo C, et al. Distribution of high-risk human papillomavirus genotypes in precancerous cervical lesions in Ouagadougou, Burkina Faso. Clin Obstet Gynecol Reprod Med. 2016;2:141.
Article
Google Scholar
Djigma FW, Ouédraogo C, Karou DS, Sagna T, Bisseye C, Zeba M, et al. Prevalence and genotype characterization of human papillomaviruses among HIV-seropositive in Ouagadougou. Burkina Faso Acta Trop. 2011;117:202.
Article
CAS
PubMed
Google Scholar
Zohoncon TM, Ouedraogo TC, Brun LVC, Obiri-Yeboah D, Djigma WF, Kabibou S, et al. Molecular epidemiology of high-risk human papillomavirus in high-grade cervical intraepithelial Neoplasia and in cervical Cancer in Parakou, Republic of Benin. Pak J Biol Sci PJBS. 2016;19:49.
Article
CAS
PubMed
Google Scholar
Piras F, Piga M, De Montis A, Zannou AR, Minerba L, Perra MT, et al. Prevalence of human papillomavirus infection in women in Benin. West Africa Virol J. 2011;8:514.
PubMed
Google Scholar
Jaquet A, Horo A, Charbonneau V, Ekouevi DK, Roncin L, Toure B, et al. Cervical human papillomavirus and HIV infection in women of child-bearing age in Abidjan, Côte d’Ivoire, 2010. Br J Cancer. 2012;107:556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ndiaye C, Alemany L, Ndiaye N, Kamaté B, Diop Y, Odida M, et al. Human papillomavirus distribution in invasive cervical carcinoma in sub-Saharan Africa: could HIV explain the differences? Trop Med Int Health TM IH. 2012;17:1432.
Article
PubMed
Google Scholar
Zohoncon TM, Bisseye C, Djigma FW, Yonli AT, Compaore TR, Sagna T, et al. Prevalence of HPV high-risk genotypes in three cohorts of women in Ouagadougou (Burkina Faso). Mediterr J Hematol Infect Dis. 2013;5:e2013059.
Article
PubMed
PubMed Central
Google Scholar
Roden RBS, Stern PL. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat Rev Cancer. 2018;18:240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pastrana DV, Gambhira R, Buck CB, Pang Y-YS, Thompson CD, Culp TD, et al. Cross-neutralization of cutaneous and mucosal papillomavirus types with anti-sera to the amino terminus of L2. Virology. 2005;337:365.
Article
CAS
PubMed
Google Scholar
Alphs HH, Gambhira R, Karanam B, Roberts JN, Jagu S, Schiller JT, et al. Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2. Proc Natl Acad Sci U S A. 2008;105:5850.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schellenbacher C, Roden RBS, Kirnbauer R. Developments in L2-based human papillomavirus (HPV) vaccines. Virus Res. 2017;231:166.
Article
CAS
PubMed
Google Scholar
Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Müller M. Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol. 2003;77:9211–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohl T, Hitzeroth II, Stewart D, Varsani A, Govan VA, Christensen ND, et al. Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study. Clin Vaccine Immunol. 2006;13:845.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohl TO, Hitzeroth II, Christensen ND, Rybicki EP. Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol. 2007;7:56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, et al. Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol. 2007;88(Pt 5):1460.
Article
CAS
PubMed
Google Scholar
Matić S, Masenga V, Poli A, Rinaldi R, Milne RG, Vecchiati M, et al. Comparative analysis of recombinant human papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol J. 2012;10:410.
Article
PubMed
CAS
Google Scholar
Varsani A, Williamson A-L, Stewart D, Rybicki EP. Transient expression of human papillomavirus type 16 L1 protein in Nicotiana benthamiana using an infectious tobamovirus vector. Virus Res. 2006;120:91.
Article
CAS
PubMed
Google Scholar
Warzecha H, Mason HS, Lane C, Tryggvesson A, Rybicki E, Williamson A-L, et al. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J Virol. 2003;77:8702.
Article
CAS
PubMed
PubMed Central
Google Scholar
What is Viral Hepatitis? | Division of Viral Hepatitis | CDC. 2019. https://www.cdc.gov/hepatitis/abc/index.htm. .
Murphy DG, Sablon E, Chamberland J, Fournier E, Dandavino R, Tremblay CL. Hepatitis C virus genotype 7, a new genotype originating from Central Africa. J Clin Microbiol. 2015;53:967.
Article
PubMed
PubMed Central
Google Scholar
Ishii S, Koziel MJ. Immune responses during acute and chronic infection with hepatitis C virus. Clin Immunol Orlando Fla. 2008;128:133.
Article
CAS
Google Scholar
Lechner F, Gruener NH, Urbani S, Uggeri J, Santantonio T, Kammer AR, et al. CD8+ T lymphocyte responses are induced during acute hepatitis C virus infection but are not sustained. Eur J Immunol. 2000;30:2479.
Article
CAS
PubMed
Google Scholar
Yerly D, Heckerman D, Allen TM, Chisholm JV, Faircloth K, Linde CH, et al. Increased cytotoxic T-lymphocyte epitope variant cross-recognition and functional avidity are associated with hepatitis C virus clearance. J Virol. 2008;82:3147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pniewski T, Kapusta J, Bociąg P, Wojciechowicz J, Kostrzak A, Gdula M, et al. Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J Appl Genet. 2011;52:125.
Article
CAS
PubMed
Google Scholar
Assih M, Ouattara AK, Diarra B, Yonli AT, Compaore TR, Obiri-Yeboah D, et al. Genetic diversity of hepatitis viruses in west-African countries from 1996 to 2018. World J Hepatol. 2018;10:807.
Article
PubMed
PubMed Central
Google Scholar
Kramvis A, Kew MC. Epidemiology of hepatitis B virus in Africa, its genotypes and clinical associations of genotypes. Hepatol Res Off J Jpn Soc Hepatol. 2007;37:S9.
Article
Google Scholar
Ayele S, Chataway J, Wield D. Partnerships in African crop biotech. Nat Biotechnol. 2006;24:619.
Article
CAS
PubMed
Google Scholar
Cohen JI. Poorer nations turn to publicly developed GM crops. Nat Biotechnol. 2005;23:27.
Article
CAS
PubMed
Google Scholar
Achour M, Younes BR, Kochbati L, Kahla S, Zeghal D, Maalej M, et al. Production of recombinant proteins GST L1, E6 and E7 tag HPV 16 for antibody detection of Tunisian cervical cancer patients. Afr J Biotechnol. 2009;8:369.
Tombari W, Ghram A. Production of a truncated recombinant HA1 for influenza a H9 subtype screening. Biol J Int Assoc Biol Stand. 2016;44:546.
CAS
Google Scholar
Thomson JA. The role of biotechnology for agricultural sustainability in Africa. Philos Trans R Soc B Biol Sci. 2008;363:905.
Article
Google Scholar
Halley-Stott RP, Tanzer F, Martin DP, Rybicki EP. The complete nucleotide sequence of a mild strain of bean yellow dwarf virus. Arch Virol. 2007;152:1237.
Article
CAS
PubMed
Google Scholar
Obembe OO. The plant biotechnology flight: is Africa on board? Afr J Biotechnol. 2010;9:4300–8.
Google Scholar
Brugidou C, Holt C, Ngon A, Yassi M, Zhang S, Beachy R, Fauquet C. Synthesis of an infectious full-length cDNA clone of rice yellow mottle virus andmutagenesis of the coat protein. Virology. 1995;206:108.
Article
CAS
PubMed
Google Scholar
Koala M, Traoré VSE, Sérémé D, Neya BJ, Brugidou C, Barro N, et al. Imperata yellow mottle virus: an emerging threat to maize, Sorghum and Pearl Millet in Burkina Faso. Agric Sci. 2017;8:397.
CAS
Google Scholar
Tiendrébéogo F, Lefeuvre P, Hoareau M, Traoré VSE, Barro N, Péréfarres F, et al. Molecular and biological characterization of pepper yellow vein Mali virus (PepYVMV) isolates associated with pepper yellow vein disease in Burkina Faso. Arch Virol. 2011;156:483.
Article
PubMed
CAS
Google Scholar
Tiendrebeogo F, Traoré V, Nicolas B, Traore A, Gnissa K, Traore O. Characterization of pepper yellow vein Mali virus in Capsicum sp. in Burkina Faso. Plant Pathol J. 2008;7:155.
Article
CAS
Google Scholar
Sérémé D, Lacombe S, Konaté M, Pinel-Galzi A, Traoré VSE, Hébrard E, et al. Biological and molecular characterization of a putative new sobemovirus infecting Imperata cylindrica and maize in Africa. Arch Virol. 2008;153:1813.
Article
PubMed
CAS
Google Scholar
Secretariat of the Convention on Biological Diversity. Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization. Montreal: Secretariat of the Convention on Biological Diversity; 2011.
Google Scholar