van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, et al. Coronaviridae. In: MHV v R, Fauquet CM, DHL B, Carstens EB, Estes MK, Lemon SM, et al., editors. Virus taxonomy: Classification and nomenclature of viruses Seventh report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press; 2000. p. 835–49. ISBN 0123702003.
Pradesh U, Upadhayay PDD, Vigyan PC. Coronavirus infection in equines: A review. Asian J Anim Vet Adv. 2014;9(3):164–76.
Article
CAS
Google Scholar
Lee C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol J. 2015;12(1):193.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bande F, Arshad SS, Hair Bejo M, Moeini H, Omar AR. Progress and challenges toward the development of vaccines against avian infectious bronchitis. J Immunol Res. 2015;2015. https://doi.org/10.1155/2015/424860.
Article
Google Scholar
Owusu M, Annan A, Corman VM, Larbi R, Anti P, Drexler JF, et al. Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana. PLoS One. 2014;9(7):e99782.
Article
PubMed
PubMed Central
CAS
Google Scholar
van der Hoek L. Human coronaviruses: What do they cause? Antiviral Therapy. 2007;12(4 Pt B):651.
Google Scholar
Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis. 2003;36(8):985–9.
Article
PubMed
Google Scholar
Gerna G, Campanini G, Rovida F, Percivalle E, Sarasini A, Marchi A, et al. Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J Med Virol. 2006;78(7):938–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vabret A, Dina J, Gouarin S, Petitjean J, Tripey V, Brouard J, et al. Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France. J Paediatr Child Health. 2008;44(4):176–81.
Article
PubMed
Google Scholar
Gerna G, Percivalle E, Sarasini A, Campanini G, Piralla A, Rovida F, et al. Human respiratory coronavirus HKU1 versus other coronavirus infections in Italian hospitalised patients. J Clin Virol. 2007;38(3):244–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fouchier RA, Kuiken T, Schutten M, Van Amerongen G, van Doornum GJ, van den Hoogen BG, et al. Aetiology: Koch's postulates fulfilled for SARS virus. Nature. 2003;423(6937):240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mäkelä MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimäki M, et al. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol. 1998;36(2):539–42.
PubMed
PubMed Central
Google Scholar
Zhong N, Zheng B, Li Y, Poon L, Xie Z, Chan K, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003;362(9393):1353–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woo PC, Lau SK, Huang Y, Yuen K-Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med. 2009;234(10):1117–27.
Article
CAS
Google Scholar
van Elden LJ, Anton MAM, van Alphen F, Hendriksen KA, Hoepelman AI, van Kraaij MG, et al. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction. J Infect Dis. 2004;189(4):652–7.
Article
PubMed
Google Scholar
Kim KY, Han SY, Kim H-S, Cheong H-M, Kim SS, Kim DS. Human coronavirus in the 2014 winter season as a cause of lower respiratory tract infection. Yonsei Med J. 2017;58(1):174–9.
Article
PubMed
Google Scholar
Dominguez SR, Robinson CC, Holmes KV. Detection of four human coronaviruses in respiratory infections in children: A one-year study in Colorado. J Med Virol. 2009;81(9):1597–604.
Article
PubMed
PubMed Central
Google Scholar
Jimenez-Guardeño JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, et al. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog. 2014;10(8):e1004320.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lau SK, Woo PC, Li KS, Huang Y, Tsoi H-W, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci. 2005;102(39):14040–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rest JS, Mindell DP. SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting. Infect Genet Evol. 2003;3(3):219–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu G, Wang Q, Gao GF. Bat-to-human: Spike features determining ‘host jump’of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015;23(8):468–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan JF-W, To KK-W, Tse H, Jin D-Y, Yuen K-Y. Interspecies transmission and emergence of novel viruses: Lessons from bats and birds. Trends Microbiol. 2013;21(10):544–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hon C-C, Lam T-Y, Shi Z-L, Drummond AJ, Yip C-W, Zeng F, et al. Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J Virol. 2008;82(4):1819–26.
Article
CAS
PubMed
Google Scholar
World Health Organization WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 2003. Available from: http://www.who.int/csr/sars/country/table2004_04_21/en/index.html.
World Health Organization WHO. WHO MERS-CoV Global Summary and Assessment of Risk, August 2018 (WHO/MERS/RA/August18) 2018. Available from: http://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1.
Lou Z, Sun Y, Rao Z. Current progress in antiviral strategies. Trends Pharmacol Sci. 2014;35(2):86–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kilianski A, Baker SC. Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors. Antivir Res. 2014;101:105–12.
Article
CAS
PubMed
Google Scholar
Kilianski A, Mielech A, Deng X, Baker SC. Assessing activity and inhibition of MERS-CoV papain-like and 3C-like proteases using luciferase-based biosensors. J Virol. 2013;66:JVI. 02105–02113.
Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193–292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu DX, Fung TS, Chong KK-L, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antivir Res. 2014;109:97–109.
Article
CAS
PubMed
Google Scholar
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses. 2012;4(4):557–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med. 2012;18(12):1820.
Article
CAS
PubMed
PubMed Central
Google Scholar
Enjuanes L, Nieto-Torres JL, Jimenez-Guardeño JM, DeDiego ML. Recombinant live vaccines to protect against the severe acute respiratory syndrome coronavirus. In: Dormitzer P, Mandl CW, Rappuoli R, editors. Replicating vaccines, Birkhauser advances in infectious diseases book series (BAID). Basel: Springer; 2011. p. 73–97.
Google Scholar
Regla-Nava JA, Nieto-Torres JL, Jimenez-Guardeño JM, Fernandez-Delgado R, Fett C, Castaño-Rodríguez C, et al. SARS coronaviruses with mutations in E protein are attenuated and promising vaccine candidates. J Virol. 2015;89(7):JVI):03566–14.
Article
CAS
Google Scholar
DeDiego ML, Álvarez E, Almazán F, Rejas MT, Lamirande E, Roberts A, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81(4):1701–13.
Article
CAS
PubMed
Google Scholar
Netland J, DeDiego ML, Zhao J, Fett C, Álvarez E, Nieto-Torres JL, et al. Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology. 2010;399(1):120–8.
Article
CAS
PubMed
Google Scholar
Mortola E, Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 2004;576(1–2):174–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Zheng X, Gai W, Zhao Y, Wang H, Wang H, et al. MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular immunity in rhesus macaques. Oncotarget. 2017;8(8):12686–94.
PubMed
Google Scholar
Kuo L, Masters PS. The small envelope protein E is not essential for murine coronavirus replication. J Virol. 2003;77(8):4597–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortego J, Ceriani JE, Patiño C, Plana J, Enjuanes L. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology. 2007;368(2):296–308.
Article
CAS
PubMed
Google Scholar
Ruch TR, Machamer CE. The coronavirus E protein: Assembly and beyond. Viruses. 2012;4(3):363–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siu Y, Teoh K, Lo J, Chan C, Kien F, Escriou N, et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol. 2008;82(22):11318–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531(7592):118–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song HC, Seo M-Y, Stadler K, Yoo BJ, Choo Q-L, Coates SR, et al. Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol. 2004;78(19):10328–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses: Springer; 2015. p. 1–23.
Book
Google Scholar
Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122–34.
Article
PubMed
PubMed Central
Google Scholar
Qian Z, Dominguez SR, Holmes KV. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS One. 2013;8(10):e76469.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005;64:165–230.
Article
PubMed
CAS
PubMed Central
Google Scholar
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 2014;6(8):2991–3018.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in sac-cells: Determination of the first site of budding of progeny virions. Eur J Cell Biol. 1984;33(2):281–93.
CAS
PubMed
Google Scholar
Klumperman J, Locker JK, Meijer A, Horzinek MC, Geuze HJ, Rottier P. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol. 1994;68(10):6523–34.
CAS
PubMed
PubMed Central
Google Scholar
Boscarino JA, Logan HL, Lacny JJ, Gallagher TM. Envelope protein palmitoylations are crucial for murine coronavirus assembly. J Virol. 2008;82(6):2989–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruch TR, Machamer CE. The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for release of infectious virus. J Virol. 2011;85(2):675–85.
Article
CAS
PubMed
Google Scholar
Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11–22.
Article
CAS
PubMed
Google Scholar
de Haan CA, Vennema H, Rottier PJ. Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J Virol. 2000;74(11):4967–78.
Article
PubMed
PubMed Central
Google Scholar
Lim K, Liu D. The missing link in coronavirus assembly: retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins. J Biol Chem. 2001;276(20):17515–23.
Article
CAS
PubMed
Google Scholar
Opstelten DJ, Raamsman M, Wolfs K, Horzinek MC, Rottier P. Envelope glycoprotein interactions in coronavirus assembly. J Cell Biol. 1995;131(2):339–49.
Article
CAS
PubMed
Google Scholar
Escors D, Ortego J, Laude H, Enjuanes L. The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol. 2001;75(3):1312–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narayanan K, Maeda A, Maeda J, Makino S. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol. 2000;74(17):8127–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corse E, Machamer CE. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J Virol. 2000;74(9):4319–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corse E, Machamer CE. The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology. 2003;312(1):25–34.
Article
CAS
PubMed
Google Scholar
Bos EC, Luytjes W, van der Meulen H, Koerten HK, Spaan WJ. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology. 1996;218(1):52–60.
Article
CAS
PubMed
Google Scholar
Vennema H, Godeke G-J, Rossen J, Voorhout W, Horzinek M, Opstelten D, et al. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 1996;15(8):2020–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baudoux P, Carrat C, Besnardeau L, Charley B, Laude H. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol. 1998;72(11):8636–43.
CAS
PubMed
PubMed Central
Google Scholar
Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG. Coronavirus envelope (E) protein remains at the site of assembly. Virology. 2015;478:75–85.
Article
CAS
PubMed
Google Scholar
Nieto-Torres JL, DeDiego ML, Álvarez E, Jiménez-Guardeño JM, Regla-Nava JA, Llorente M, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology. 2011;415(2):69–82.
Article
CAS
PubMed
Google Scholar
Curtis KM, Yount B, Baric RS. Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol. 2002;76(3):1422–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortego J, Escors D, Laude H, Enjuanes L. Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol. 2002;76(22):11518–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuo L, Hurst KR, Masters PS. Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J Virol. 2007;81(5):2249–62.
Article
CAS
PubMed
Google Scholar
Arbely E, Khattari Z, Brotons G, Akkawi M, Salditt T, Arkin IT. A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J Mol Biol. 2004;341(3):769–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, et al. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol. 2000;74(5):2333–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Surya W, Claudine S, Torres J. Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins. J Biol Chem. 2014;289(18):12535–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Yuan Q, Torres J, Tam J, Liu D. Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein. Virology. 2006;349(2):264–75.
Article
CAS
PubMed
Google Scholar
Surya W, Samsó M, Torres J. Structural and functional aspects of viroporins in human respiratory viruses: respiratory syncytial virus and coronaviruses. Respiratory Disease and Infection - A New Insight. InTech. 2013. https://doi.org/10.5772/53957.
Google Scholar
Torres J, Maheswari U, Parthasarathy K, Ng L, Liu DX, Gong X. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. 2007;16(9):2065–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verdiá-Báguena C, Nieto-Torres JL, Alcaraz A, DeDiego ML, Torres J, Aguilella VM, et al. Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology. 2012;432(2):485–94.
Article
PubMed
CAS
Google Scholar
Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014;10(5):e1004077.
Article
PubMed
PubMed Central
CAS
Google Scholar
Verdiá-Báguena C, Nieto-Torres JL, Alcaraz A, DeDiego ML, Enjuanes L, Aguilella VM. Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge. Biochim Biophys Acta. 2013;1828(9):2026–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu Q, Zhang Y, Lü H, Wang J, He X, Liu Y, et al. The E protein is a multifunctional membrane protein of SARS-CoV. Genomics, Proteomics & Bioinformatics. 2003;1(2):131–44.
Article
CAS
Google Scholar
Du Y, Zuckermann FA, Yoo D. Myristoylation of the small envelope protein of porcine reproductive and respiratory syndrome virus is non-essential for virus infectivity but promotes its growth. Virus Res. 2010;147(2):294–9.
Article
CAS
PubMed
Google Scholar
Cohen JR, Lin LD, Machamer CE. Identification of a Golgi targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein. J Virol. 2011;85(12):5794–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teoh K-T, Siu Y-L, Chan W-L, Schlüter MA, Liu C-J, Peiris JM, et al. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol Biol Cell. 2010;21(22):3838–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Javier RT, Rice AP. Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses. J Virol. 2011;85(22):11544–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hung AY, Sheng M. PDZ domains: structural modules for protein complex assembly. J Biol Chem. 2002;277(8):5699–702.
Article
CAS
PubMed
Google Scholar
Münz M, Hein J, Biggin PC. The role of flexibility and conformational selection in the binding promiscuity of PDZ domains. PLoS Comput Biol. 2012;8(11):e1002749.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gerek ZN, Keskin O, Ozkan SB. Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior. Proteins Struct Funct Bioinf. 2009;77(4):796–811.
Article
CAS
Google Scholar
Yang Y, Xiong Z, Zhang S, Yan Y, Nguyen J, Ng B, et al. Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem J. 2005;392(1):135–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jimenez-Guardeño JM, Regla-Nava JA, Nieto-Torres JL, DeDiego ML, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathog. 2015;11(10):e1005215.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hogue BG, Machamer CE. Coronavirus structural proteins and virus assembly. Nidoviruses: American Society of Microbiology; 2008. p. 179–200.
Google Scholar
Westerbeck JW, Machamer CE. A coronavirus E protein is present in two distinct pools with different effects on assembly and the secretory pathway. J Virol. 2015;89(19):9313-23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan Q, Liao Y, Torres J, Tam J, Liu D. Biochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome coronavirus envelope protein expressed in mammalian cells. FEBS Lett. 2006;580(13):3192–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol. 2005;86(5):1423–34.
Article
CAS
PubMed
Google Scholar
Corse E, Machamer CE. The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. J Virol. 2002;76(3):1273–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeda J, Repass JF, Maeda A, Makino S. Membrane topology of coronavirus E protein. Virology. 2001;281(2):163–9.
Article
CAS
PubMed
Google Scholar
Godet M, L'Haridon R, Vautherot J-F, Laude H. TGEV coronavirus ORF4 encodes a membrane protein that is incorporated into virions. Virology. 1992;188(2):666–75.
Article
CAS
PubMed
Google Scholar
Hofmann K. TMbase-A database of membrane spanning proteins segments. Biol Chem Hoppe Seyler. 1993;374:166.
Google Scholar
Tusnady GE, Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction1. J Mol Biol. 1998;283(2):489–506.
Article
CAS
PubMed
Google Scholar
Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.
Article
CAS
PubMed
Google Scholar
Jones DT. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics. 2007;23(5):538–44.
Article
CAS
PubMed
Google Scholar
Nugent T, Jones DT. Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics. 2009;10(1):159–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elofsson A. Heijne Gv. Membrane protein structure: prediction versus reality. Annu Rev Biochem. 2007;76:125–40.
Article
CAS
PubMed
Google Scholar
Birzele F, Kramer S. A new representation for protein secondary structure prediction based on frequent patterns. Bioinformatics. 2006;22(21):2628–34.
Article
CAS
PubMed
Google Scholar
Chen K, Kurgan L, Ruan J, editors. Optimization of the sliding window size for protein structure prediction. In: 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology: IEEE; 2006. https://doi.org/10.1109/CIBCB.2006.330959.
Zviling M, Leonov H, Arkin IT. Genetic algorithm-based optimization of hydrophobicity tables. Bioinformatics. 2005;21(11):2651–6.
Article
CAS
PubMed
Google Scholar
Schlessinger A, Rost B. Protein flexibility and rigidity predicted from sequence. Proteins Struct Funct Bioinf. 2005;61(1):115–26.
Article
CAS
Google Scholar
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292(2):195–202.
Article
CAS
PubMed
Google Scholar
Bodén M, Yuan Z, Bailey TL. Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures. BMC Bioinformatics. 2006;7(1):68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sander O, Sommer I, Lengauer T. Local protein structure prediction using discriminative models. BMC Bioinformatics. 2006;7(1):14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ruch TR, Machamer CE. A single polar residue and distinct membrane topologies impact the function of the infectious bronchitis coronavirus E protein. PLoS Pathog. 2012;8(5):e1002674.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science. 2005;307(5716):1746–52.
Article
CAS
PubMed
Google Scholar
Basu J. Protein palmitoylation and dynamic modulation of protein function. Curr Sci. 2004;87:212–7.
CAS
Google Scholar
Salaun C, Greaves J, Chamberlain LH. The intracellular dynamic of protein palmitoylation. J Cell Biol. 2010;191(7):1229–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujiwara Y, Kondo HX, Shirota M, Kobayashi M, Takeshita K, Nakagawa A, et al. Structural basis for the membrane association of ankyrinG via palmitoylation. Sci Rep. 2016;6:23981.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sobocińska J, Roszczenko-Jasińska P, Ciesielska A, Kwiatkowska K. Protein Palmitoylation and its Role in Bacterial and viral infections. Front Immunol. 2018;8:2003.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grosenbach DW, Ulaeto DO, Hruby DE. Palmitylation of the vaccinia virus 37-kDa major envelope antigen identification of a conserved acceptor motif and biological relevance. J Biol Chem. 1997;272(3):1956–64.
Article
CAS
PubMed
Google Scholar
Majeau N, Fromentin R, Savard C, Duval M, Tremblay MJ, Leclerc D. Palmitoylation of hepatitis C virus core protein is important for virion production. J Biol Chem. 2009;284(49):33915-25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez LA, Riffle AJ, Pike SL, Gardner D, Hogue BG. Importance of conserved cysteine residues in the coronavirus envelope protein. J Virol. 2008;82(6):3000–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta. 1999;1451(1):1–16.
Article
CAS
PubMed
Google Scholar
He M, Jenkins P, Bennett V. Cysteine 70 of ankyrin-G is S-palmitoylated and is required for function of ankyrin-G in membrane domain assembly. J Biol Chem. 2012;287(52):43995–4005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilcox C, Hu J-S, Olson EN. Acylation of proteins with myristic acid occurs cotranslationally. Science. 1987;238(4831):1275–8.
Article
CAS
PubMed
Google Scholar
James G, Olson EN. Fatty acylated proteins as components of intracellular signaling pathways. Biochemistry. 1990;29(11):2623–34.
Article
CAS
PubMed
Google Scholar
Boutin JA. Myristoylation. Cell Signal. 1997;9(1):15–35.
Article
CAS
PubMed
Google Scholar
Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangl JL. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell. 2000;101(4):353–63.
Article
CAS
PubMed
Google Scholar
Chow M, Newman J, Filman D, Hogle J, Rowlands D, Brown F. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature. 1987;327(6122):482.
Article
CAS
PubMed
Google Scholar
Henderson L, Benveniste R, Sowder R, Copeland T, Schultz A, Oroszlan S. Molecular characterization of gag proteins from simian immunodeficiency virus (SIVMne). J Virol. 1988;62(8):2587–95.
CAS
PubMed
PubMed Central
Google Scholar
Harris M, Hislop S, Patsilinacos P, Neil JC. In vivo derived HIV-1 nef gene products are heterogeneous and lack detectable nucleotide binding activity. AIDS Res Hum Retrovir. 1992;8(5):537–43.
Article
CAS
PubMed
Google Scholar
Persing DH, Varmus H, Ganem D. The preS1 protein of hepatitis B virus is acylated at its amino terminus with myristic acid. J Virol. 1987;61(5):1672–7.
CAS
PubMed
PubMed Central
Google Scholar
Álvarez E, DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Marcos-Villar L, Enjuanes L. The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology. 2010;402(2):281–91.
Article
PubMed
CAS
Google Scholar
Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe. 2009;5(6):559–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keng C-T, Åkerström S, Leung CS-W, Poon LL, Peiris JM, Mirazimi A, et al. SARS coronavirus 8b reduces viral replication by down-regulating E via an ubiquitin-independent proteasome pathway. Microbes Infect. 2011;13(2):179–88.
Article
CAS
PubMed
Google Scholar
Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol. 2007;15(5):211–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fung TS, Liu DX. Post-translational modifications of coronavirus proteins: roles and function. Futur Virol. 2018;13(6):405–30.
Article
CAS
Google Scholar
Nilsson I, Von Heijne G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem. 1993;268(8):5798–801.
CAS
PubMed
Google Scholar
Wang B, Wang Y, Frabutt DA, Zhang X, Yao X, Hu D, et al. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function. J Biol Chem. 2017;292(14):5860-70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parthasarathy K, Ng L, Lin X, Liu DX, Pervushin K, Gong X, et al. Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel. Biophys J. 2008;95(6):L39–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pervushin K, Tan E, Parthasarathy K, Lin X, Jiang FL, Yu D, et al. Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog. 2009;5(7):e1000511.
Article
PubMed
PubMed Central
CAS
Google Scholar
Torres J, Wang J, Parthasarathy K, Liu DX. The transmembrane oligomers of coronavirus protein E. Biophys J. 2005;88(2):1283–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres J, Parthasarathy K, Lin X, Saravanan R, Kukol A, Liu DX. Model of a putative pore: the pentameric α-helical bundle of SARS coronavirus E protein in lipid bilayers. Biophys J. 2006;91(3):938–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres J, Surya W, Li Y, Liu DX. Protein-protein interactions of viroporins in coronaviruses and paramyxoviruses: new targets for antivirals? Viruses. 2015;7(6):2858–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Surya W, Li Y, Verdià-Bàguena C, Aguilella VM, Torres J. MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res. 2015;201:61–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsieh P-K, Chang SC, Huang C-C, Lee T-T, Hsiao C-W, Kou Y-H, et al. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J Virol. 2005;79(22):13848–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tseng Y-T, Wang S-M, Huang K-J, Wang C-T. SARS-CoV envelope protein palmitoylation or nucleocapsid association is not required for promoting virus-like particle production. J Biomed Sci. 2014;21(1):34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maeda J, Maeda A, Makino S. Release of coronavirus E protein in membrane vesicles from virus-infected cells and E protein-expressing cells. Virology. 1999;263(2):265–72.
Article
CAS
PubMed
Google Scholar
Tan Y-J, Fielding BC, Goh P-Y, Shen S, Tan TH, Lim SG, et al. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol. 2004;78(24):14043–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang C, Ito N, Tseng C-TK, Makino S. Severe acute respiratory syndrome coronavirus 7a accessory protein is a viral structural protein. J Virol. 2006;80(15):7287–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan Y-X, Tan TH, Lee MJ-R, Tham P-Y, Gunalan V, Druce J, et al. Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein. J Virol. 2007;81(12):6346–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanzawa N, Nishigaki K, Hayashi T, Ishii Y, Furukawa S, Niiro A, et al. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-κB activation. FEBS Lett. 2006;580(30):6807–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan X, Wu J, Shan Y, Yao Z, Dong B, Chen B, et al. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology. 2006;346(1):74–85.
Article
CAS
PubMed
Google Scholar
Pan JA, Peng X, Gao Y, Li Z, Lu X, Chen Y, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One. 2008;3(10):e3299.
Article
PubMed
PubMed Central
CAS
Google Scholar
DeDiego ML, Pewe L, Alvarez E, Rejas MT, Perlman S, Enjuanes L. Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology. 2008;376(2):379–89.
Article
CAS
PubMed
Google Scholar
Yount B, Roberts RS, Sims AC, Deming D, Frieman MB, Sparks J, et al. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol. 2005;79(23):14909–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaecher SR, Touchette E, Schriewer J, Buller RM, Pekosz A. Severe acute respiratory syndrome coronavirus gene 7 products contribute to virus-induced apoptosis. J Virol. 2007;81(20):11054–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F. A LC3-interacting motif in the influenza a virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe. 2014;15(2):239–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramani C, Nair VP, Anang S, Mandal SD, Pareek M, Kaushik N, et al. Host-Virus Protein Interaction Network Reveals the Involvement of Multiple Host Processes in the Life Cycle of Hepatitis E Virus. MSystems. 2018;3(1):e00135–17.
Article
PubMed
PubMed Central
Google Scholar
Benga WJ, Krieger SE, Dimitrova M, Zeisel MB, Parnot M, Lupberger J, et al. Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology. 2010;51(1):43–53.
Article
CAS
PubMed
Google Scholar
Lu J, Qu Y, Liu Y, Jambusaria R, Han Z, Ruthel G, et al. Host IQGAP1 and Ebola virus VP40 interactions facilitate virus-like particle egress. J Virol. 2013;87(13):7777–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
König R, Stertz S, Zhou Y, Inoue A, Hoffmann H-H, Bhattacharyya S, et al. Human host factors required for influenza virus replication. Nature. 2010;463(7282):813.
Article
PubMed
PubMed Central
CAS
Google Scholar
Börgeling Y, Schmolke M, Viemann D, Nordhoff C, Roth J, Ludwig S. Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection. J Biol Chem. 2014;289(1):13–27.
Article
PubMed
CAS
Google Scholar
Ye Y, Hogue BG. Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J Virol. 2007;81(7):3597–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krijnse-Locker J, Ericsson M, Rottier P, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol. 1994;124(1):55–70.
Article
CAS
PubMed
Google Scholar
Tooze J, Tooze S. Infection of AtT20 murine pituitary tumour cells by mouse hepatitis virus strain A59: virus budding is restricted to the Golgi region. Eur J Cell Biol. 1985;37:203–12.
CAS
PubMed
Google Scholar
Arndt AL, Larson BJ, Hogue BG. A conserved domain in the coronavirus membrane protein tail is important for virus assembly. J Virol. 2010;84(21):11418–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen V-P, Hogue BG. Protein interactions during coronavirus assembly. J Virol. 1997;71(12):9278–84.
CAS
PubMed
PubMed Central
Google Scholar
Ho Y, Lin P-H, Liu CY, Lee S-P, Chao Y-C. Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem Biophys Res Commun. 2004;318(4):833–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Almazán F, DeDiego ML, Sola I, Zuñiga S, Nieto-Torres JL, Marquez-Jurado S, et al. Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. MBio. 2013;4(5):e00650–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res. 2014;194:124–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Inglis S. Association of the infectious bronchitis virus 3c protein with the virion envelope. Virology. 1991;185(2):911–7.
Article
CAS
PubMed
Google Scholar
Yu X, Bi W, Weiss SR, Leibowitz JL. Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology. 1994;202(2):1018–23.
Article
CAS
PubMed
Google Scholar
Locker JK, Griffiths G, Horzinek M, Rottier P. O-glycosylation of the coronavirus M protein: differential localization of sialyltransferases in N-and O-linked glycosylation. J Biol Chem. 1992;267(20):14094–101.
CAS
PubMed
Google Scholar
Machamer CE, Mentone SA, Rose JK, Farquhar MG. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc Natl Acad Sci. 1990;87(18):6944–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer F, Stegen CF, Masters PS, Samsonoff WA. Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J Virol. 1998;72(10):7885–94.
CAS
PubMed
PubMed Central
Google Scholar
Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol. 2002;76(8):3697–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, et al. Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis. 2004;10(2):320.
Article
PubMed
PubMed Central
Google Scholar
Snijder EJ, Van Der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006;80(12):5927–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulasli M, Verheije MH, de Haan CA, Reggiori F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell Microbiol. 2010;12(6):844–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio. 2013;4(4):e00524–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hagemeijer MC, Monastyrska I, Griffith J, van der Sluijs P, Voortman J, van Bergen en Henegouwen PM, et al. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology. 2014;458:125–35.
Article
CAS
PubMed
Google Scholar
Hagemeijer MC, Ulasli M, Vonk A, Reggiori F, Rottier PJ, de Haan CA. Mobility and interactions of the coronavirus nonstructural protein 4. J Virol. 2011;85(9):4572–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossman JS, Lamb RA. Viral membrane scission. Annu Rev Cell Dev Biol. 2013;29:551–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martyna A, Gómez-Llobregat J, Lindén M, Rossman JS. Curvature Sensing by a Viral Scission Protein. Biochemistry. 2016;55(25):3493–6.
Article
CAS
PubMed
Google Scholar
Roberts KL, Leser GP, Ma C, Lamb RA. The amphipathic helix of influenza a virus M2 protein is required for filamentous bud formation and scission of filamentous and spherical particles. J Virol. 2013;87(18):9973–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan B, Campbell S, Bacharach E, Rein A, Goff SP. Infectivity of Moloney murine leukemia virus defective in late assembly events is restored by late assembly domains of other retroviruses. J Virol. 2000;74(16):7250–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Utley TJ, Ducharme NA, Varthakavi V, Shepherd BE, Santangelo PJ, Lindquist ME, et al. Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proc Natl Acad Sci. 2008;105(29):10209–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossman JS, Jing X, Leser GP, Lamb RA. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell. 2010;142(6):902–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parthasarathy K, Lu H, Surya W, Vararattanavech A, Pervushin K, Torres J. Expression and purification of coronavirus envelope proteins using a modified β-barrel construct. Protein Expr Purif. 2012;85(1):133–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen X, Xue J-H, Yu C-Y, Luo H-B, Qin L, Yu X-J, et al. Small envelope protein E of SARS: cloning, expression, purification, CD determination, and bioinformatics analysis. Acta Pharmacol Sin. 2003;24(6):505–11.
CAS
PubMed
Google Scholar
Steinmann E, Penin F, Kallis S, Patel AH, Bartenschlager R, Pietschmann T. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog. 2007;3(7):e103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pinto LH, Lamb RA. Controlling influenza virus replication by inhibiting its proton channel. Mol BioSyst. 2007;3(1):18–23.
Article
CAS
PubMed
Google Scholar
Takeda M, Pekosz A, Shuck K, Pinto LH, Lamb RA. Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol. 2002;76(3):1391–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakai A, Claire MS, Faulk K, Govindarajan S, Emerson SU, Purcell RH, et al. The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci. 2003;100(20):11646–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones CT, Murray CL, Eastman DK, Tassello J, Rice CM. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol. 2007;81(16):8374–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein J. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol. 1990;64(2):621–9.
CAS
PubMed
PubMed Central
Google Scholar
Hsu K, Seharaseyon J, Dong P, Bour S, Marbán E. Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol Cell. 2004;14(2):259–67.
Article
CAS
PubMed
Google Scholar
Lazrak A, Iles KE, Liu G, Noah DL, Noah JW, Matalon S. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J. 2009;23(11):3829–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimbo K, Brassard DL, Lamb RA, Pinto LH. Viral and cellular small integral membrane proteins can modify ion channels endogenous to Xenopus oocytes. Biophys J. 1995;69(5):1819–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song W, Liu G, Bosworth CA, Walker JR, Megaw GA, Lazrak A, et al. Respiratory syncytial virus inhibits lung epithelial Na+ channels by up-regulating inducible nitric-oxide synthase. J Biol Chem. 2009;284(11):7294–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitehead SS, Bukreyev A, Teng MN, Firestone C-Y, Claire MS, Elkins WR, et al. Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J Virol. 1999;73(4):3438–42.
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Lu W, Chen J, Xie S, Shi H, Hsu H, et al. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Lett. 2012;586(4):384–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe S, Watanabe T, Kawaoka Y. Influenza A virus lacking M2 protein as a live attenuated vaccine. J Virol. 2009;83(11):5947–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gladue DP, Holinka LG, Largo E, Sainza IF, Carrillo C, O'Donnell V, et al. Classical swine fever virus p7 protein is a viroporin involved in virulence in swine. J Virol. 2012;86(12):6778–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto LH, Dieckmann GR, Gandhi CS, Papworth CG, Braman J, Shaughnessy MA, et al. A functionally defined model for the M2 proton channel of influenza a virus suggests a mechanism for its ion selectivity. Proc Natl Acad Sci. 1997;94(21):11301–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agirre A, Barco A, Carrasco L, Nieva JL. Viroporin-mediated membrane permeabilization pore formation by nonstructural poliovirus 2B protein. J Biol Chem. 2002;277(43):40434–41.
Article
CAS
PubMed
Google Scholar
Grice A, Kerr I, Sansom M. Ion channels formed by HIV-1 Vpu: a modelling and simulation study. FEBS Lett. 1997;405(3):299–304.
Article
CAS
PubMed
Google Scholar
Melton JV, Ewart GD, Weir RC, Board PG, Lee E, Gage PW. Alphavirus 6K proteins form ion channels. J Biol Chem. 2002;277(49):46923–31.
Article
CAS
PubMed
Google Scholar
Hyser JM, Estes MK. Pathophysiological consequences of calcium-conducting viroporins. Annu Rev Virol. 2015;2:473–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez ME, Carrasco L. Viroporins. FEBS Lett. 2003;552(1):28–34.
Article
CAS
PubMed
Google Scholar
Suzuki T, Orba Y, Okada Y, Sunden Y, Kimura T, Tanaka S, et al. The human polyoma JC virus agnoprotein acts as a viroporin. PLoS Pathog. 2010;6(3):e1000801.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hyser JM, Collinson-Pautz MR, Utama B, Estes MK. Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. MBio. 2010;1(5):e00265–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Takeuchi K, Pinto L, Lamb R. Ion channel activity of influenza a virus M2 protein: characterization of the amantadine block. J Virol. 1993;67(9):5585–94.
CAS
PubMed
PubMed Central
Google Scholar
Mould JA, Paterson RG, Takeda M, Ohigashi Y, Venkataraman P, Lamb RA, et al. Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. Dev Cell. 2003;5(1):175–84.
Article
CAS
PubMed
Google Scholar
Pham T, Perry JL, Dosey TL, Delcour AH, Hyser JM. The rotavirus NSP4 viroporin domain is a calcium-conducting ion channel. Sci Rep. 2017;7:43487.
Article
PubMed
PubMed Central
Google Scholar
Premkumar A, Wilson L, Ewart G, Gage P. Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett. 2004;557(1–3):99–103.
Article
CAS
PubMed
Google Scholar
Zhang R, Wang K, Lv W, Yu W, Xie S, Xu K, et al. The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production. Biochim Biophys Acta. 2014;1838(4):1088–95.
Article
CAS
PubMed
Google Scholar
Li Y, To J, Verdià-Baguena C, Dossena S, Surya W, Huang M, et al. Inhibition of the human respiratory syncytial virus small hydrophobic protein and structural variations in a bicelle environment. J Virol. 2014;88(20):11899–914.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza a virus. Nature. 2008;451(7178):591.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hay A, Wolstenholme A, Skehel J, Smith MH. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 1985;4(11):3021–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson L, Mckinlay C, Gage P, Ewart G. SARS coronavirus E protein forms cation-selective ion channels. Virology. 2004;330(1):322–31.
Article
CAS
PubMed
Google Scholar
Wilson L, Gage P, Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology. 2006;353(2):294–306.
Article
CAS
PubMed
Google Scholar
Lee C, Yoo D. Cysteine residues of the porcine reproductive and respiratory syndrome virus small envelope protein are non-essential for virus infectivity. J Gen Virol. 2005;86(11):3091–6.
Article
CAS
PubMed
Google Scholar
Aguilella VM, Queralt-Martín M, Aguilella-Arzo M, Alcaraz A. Insights on the permeability of wide protein channels: measurement and interpretation of ion selectivity. Integr Biol. 2010;3(3):159–72.
Article
Google Scholar
Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 2015;485:330–9.
Article
CAS
PubMed
Google Scholar
To J, Surya W, Fung TS, Li Y, Verdia-Baguena C, Queralt-Martin M, et al. Channel-inactivating mutations and their revertant mutants in the envelope protein of infectious bronchitis virus. J Virol. 2017;91(5):e02158–16.
PubMed
PubMed Central
Google Scholar
Hsu K, Han J, Shinlapawittayatorn K, Deschenes I, Marbán E. Membrane potential depolarization as a triggering mechanism for Vpu-mediated HIV-1 release. Biophys J. 2010;99(6):1718–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schubert U, Ferrer-Montiel AV, Oblatt-Montal M, Henklein P, Strebel K, Montal M. Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett. 1996;398(1):12–8.
Article
CAS
PubMed
Google Scholar
van Kuppeveld FJ, Hoenderop JG, Smeets RL, Willems PH, Dijkman HB, Galama JM, et al. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J. 1997;16(12):3519–32.
Article
PubMed
PubMed Central
Google Scholar
Wozniak AL, Griffin S, Rowlands D, Harris M, Yi M, Lemon SM, et al. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog. 2010;6(9):e1001087.
Article
PubMed
PubMed Central
CAS
Google Scholar
Westerbeck JW, Machamer CE. The infectious bronchitis virus coronavirus envelope protein alters Golgi pH to protect spike protein and promote release of infectious virus. bioRxiv; 2018. p. 440628.
Google Scholar
Stevens FJ, Argon Y, editors. Protein folding in the ER. Seminars in cell & developmental biology: Elsevier; 1999. https://doi.org/10.1006/scdb.1999.0315.
Article
CAS
Google Scholar
Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: a review of virus-host interactions. Diseases. 2016;4(3):26.
Article
PubMed Central
CAS
Google Scholar
Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.
Article
CAS
PubMed
Google Scholar
Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol. 2014;5:296.
Article
PubMed
PubMed Central
Google Scholar
An S, Chen C-J, Yu X, Leibowitz JL, Makino S. Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. J Virol. 1999;73(9):7853–9.
CAS
PubMed
PubMed Central
Google Scholar
DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Regla-Nava JA, Álvarez E, Oliveros JC, et al. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog. 2011;7(10):e1002315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nijmeijer S, Leurs R, Smit MJ, Vischer HF. The Epstein-Barr virus-encoded G protein-coupled receptor BILF1 hetero-oligomerizes with human CXCR4, scavenges Gαi proteins, and constitutively impairs CXCR4 functioning. J Biol Chem. 2010;285(38):29632–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore ML, Chi MH, Luongo C, Lukacs NW, Polosukhin VV, Huckabee MM, et al. A chimeric A2 strain of respiratory syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced viral load, mucus, and airway dysfunction. J Virol. 2009;83(9):4185–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei C, Ni C, Song T, Liu Y, Yang X, Zheng Z, et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol. 2010;185:1158–68.
Article
CAS
PubMed
Google Scholar
Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL. Viral subversion of the immune system. Annu Rev Immunol. 2000;18(1):861–926.
Article
CAS
PubMed
Google Scholar
Cornell CT, Kiosses WB, Harkins S, Whitton JL. Coxsackievirus B3 proteins directionally complement each other to downregulate surface major histocompatibility complex class I. J Virol. 2007;81(13):6785–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Jong AS, Visch H-J, de Mattia F, van Dommelen MM, Swarts HG, Luyten T, et al. The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi. J Biol Chem. 2006;281(20):14144–50.
Article
PubMed
CAS
Google Scholar
Ichinohe T, Pang IK, Iwasaki A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol. 2010;11(5):404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Triantafilou K, Kar S, Vakakis E, Kotecha S, Triantafilou M. Human respiratory syncytial virus viroporin SH: a viral recognition pathway used by the host to signal inflammasome activation. Thorax. 2013;68(1):66–75.
Article
PubMed
Google Scholar
Zhang K, Hou Q, Zhong Z, Li X, Chen H, Li W, et al. Porcine reproductive and respiratory syndrome virus activates inflammasomes of porcine alveolar macrophages via its small envelope protein E. Virology. 2013;442(2):156–62.
Article
CAS
PubMed
Google Scholar
Ito M, Yanagi Y, Ichinohe T. Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome. PLoS Pathog. 2012;8(8):e1002857.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan PK, Chan MC. Tracing the SARS-coronavirus. J Thorac Dis. 2013;5(Suppl 2):S118.
PubMed
PubMed Central
Google Scholar
Bruning A, Aatola H, Toivola H, Ikonen N, Savolainen-Kopra C, Blomqvist S, et al. Rapid detection and monitoring of human coronavirus infections. New Microbes New Infect. 2018;24:52–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol. 2015;13:123–9.
Article
PubMed
PubMed Central
Google Scholar
CDC. About Coronaviruses: Prevention and Treatment 2017. Available from: https://www.cdc.gov/coronavirus/about/prevention.html.
Zumla A, Chan JF, Azhar EI, Hui DS, Yuen K-Y. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamirande EW, DeDiego ML, Roberts A, Jackson JP, Alvarez E, Sheahan T, et al. A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters. J Virol. 2008;82(15):7721–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fett C, DeDiego ML, Regla-Nava JA, Enjuanes L, Perlman S. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J Virol. 2013;87(12):6551–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saha A, Murakami M, Kumar P, Bajaj B, Sims K, Robertson ES. Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2. J Virol. 2009;83(9):4652–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang H, Da L, Mao Y, Li Y, Li D, Xu Z, et al. Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatology. 2009;49(1):60–71.
Article
CAS
PubMed
Google Scholar
Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47.
Article
CAS
PubMed
Google Scholar
Wilson C, Arkin M. Small-molecule inhibitors of IL-2/IL-2R: lessons learned and applied. In: Vassilev L, Fry D, editors. Small-molecule inhibitors of protein-protein interactions. Berlin Heidelberg: Springer; 2010. p. 25–59.
Chapter
Google Scholar
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75(3):311–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walensky LD, Bird GH. Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem. 2014;57(15):6275–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc. 2007;129(9):2456–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stewart ML, Fire E, Keating AE, Walensky LD. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol. 2010;6(8):595–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips C, Roberts LR, Schade M, Bazin R, Bent A, Davies NL, et al. Design and structure of stapled peptides binding to estrogen receptors. J Am Chem Soc. 2011;133(25):9696–9.
Article
CAS
PubMed
Google Scholar
Zhang H, Zhao Q, Bhattacharya S, Waheed AA, Tong X, Hong A, et al. A cell-penetrating helical peptide as a potential HIV-1 inhibitor. J Mol Biol. 2008;378(3):565–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jamieson A, Robertson N. Regulation of protein-protein interactions using stapled peptides. Rep Org Chem. 2015;5:65–74.
Article
CAS
Google Scholar
Cui H-K, Qing J, Guo Y, Wang Y-J, Cui L-J, He T-H, et al. Stapled peptide-based membrane fusion inhibitors of hepatitis C virus. Bioorg Med Chem. 2013;21(12):3547–54.
Article
CAS