Wells SE, Hillner PE, Vale RD, Sachs AB. Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell. 1998;2(1):135–40. https://doi.org/10.1016/S1097-2765(00)80122-7.
Article
CAS
PubMed
Google Scholar
Vinciguerra P, Stutz F. mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol. 2004;16(3):285–92. https://doi.org/10.1016/j.ceb.2004.03.013.
Article
CAS
PubMed
Google Scholar
Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcrip- tion and a head to translation. Cell. 2009;136(4):688–700. https://doi.org/10.1016/j.cell.2009.02.001.
Article
CAS
PubMed
Google Scholar
Slomovic S, Portnoy V, Schuster G. Detection and characterization of polyadenylated RNA in Eukarya, Bacteria, archaea, and organelles. Methods Enzymol. 2008;447:501–20.
Article
CAS
Google Scholar
Houseley J, Tollervey D. The many pathways of RNA degradation. Cell. 2009;136(4):763–76. https://doi.org/10.1016/j.cell.2009.01.019.
Article
CAS
PubMed
Google Scholar
Sanfaçon H, Brodmann P, Hohn T. A dissection of the cauliflower mosaic virus polyadenylation signal. Genes Dev. 1991;5(1):141–9. https://doi.org/10.1101/gad.5.1.141.
Article
PubMed
Google Scholar
Weichs an der Glon C, Ashe M, Eggermont J, Proudfoot NJ. Tat-dependent occlusion of the HIV poly(a) site. EMBO J. 1993;12(5):2119–28. https://doi.org/10.1002/j.1460-2075.1993.tb05860.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poon LLM, Pritlove DC, Fodor E, Brownlee GG. Direct evidence that the poly(a) tail of influenza a virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol. 1999;73(4):3473–6.
CAS
PubMed
PubMed Central
Google Scholar
Steil BP, Kempf BJ, Barton DJ. Poly(a) at the 3'end of positive-strand RNA and VPg-linked poly(U) at the 5'end of negative-strand RNA are reciprocal templates during replication of poliovirus RNA. J Virol. 2010;84(6):2843–58. https://doi.org/10.1128/JVI.02620-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogram SA, Flanegan JB. Non-template functions of viral RNA in picorna virus replication. Curr OpinVirol. 2011;1(5):339–46.
CAS
Google Scholar
King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. Virus taxonomy: classification and nomenclature of viruses, ninth report of the international committee on taxonomy of viruses. San Diego, CA: Elsevier; 2012. https://doi.org/10.1002/bdrc.21026.
Book
Google Scholar
Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol. 2004;39(4):197–216.
Article
CAS
Google Scholar
Zhang X, Virtanen A, Kleiman FE. To polyadenylate or to deadenylate: that is the question. Cell Cycle. 2010;9:4437–49.
Article
CAS
Google Scholar
Tarun SZJ, Sachs AB. Association of the yeast poly(a) tail binding protein with translation initiation factor eIF-4G. EMBO J. 1996;15(24):7168–77. https://doi.org/10.1002/j.1460-2075.1996.tb01108.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amrani N, Ghosh S, Mangus DA, Jacobson A. Translation factors promote the formation of two states of the closed-loop mRNP. Nature. 2008;453(7199):1276–80. https://doi.org/10.1038/nature06974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahlquist P, Kaesberg P. Determination of the length distribution of poly(a) at the 3′ terminus of the virion RNAs of EMC virus, poliovirus, rhinovirus, RAV-61 and CPMV and of mouse globin mRNA. Nucl Acids Res. 1979;7(5):1195–204. https://doi.org/10.1093/nar/7.5.1195.
Article
CAS
PubMed
Google Scholar
Silvestri LS, Parilla JM, Morasco BJ, Ogram SA, Flanegan JB. Relationship between poliovirus negative-strand RNA synthesis and the length of the 3′ poly(a) tail. Virology. 2006;345(2):509–19. https://doi.org/10.1016/j.virol.2005.10.019.
Article
CAS
PubMed
Google Scholar
Chen J, Noueiry A, Ahlquist P. Brome mosaic virus protein 1a recruits viral RNA2 to RNA replication through a 5′ proximal RNA2 signal. J Virol. 2001;75(7):3207–19. https://doi.org/10.1128/JVI.75.7.3207-3219.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahlquist P, Noueiry AO, Lee WM, Kushner DB, Dye BT. Host factors in positive-strand RNA virus genome replication. J Virol. 2003;77(15):8181–6. https://doi.org/10.1128/JVI.77.15.8181-8186.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan X, Shi K, Meskauskas A, Simon AE. The 3′ end of Turnip Crinkle Virus contains a highly interactive structure including a translational enhancer that is disrupted by binding to the RNA-dependent RNA polymerase. RNA. 2009;15(10):1849–64. https://doi.org/10.1261/rna.1708709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarnow P. Role of 3′-end sequences in infectivity of poliovirus transcripts made in vitro. J Virol. 1989;63(1):467–70.
CAS
PubMed
PubMed Central
Google Scholar
Gallie DR, Tanguay RL, Leathers V. The tobacco etch viral 5′ leader and poly(a) tail are functionally synergistic regulators of translation. Gene. 1995;165(2):233–8. https://doi.org/10.1016/0378-1119(95)00521-7.
Article
CAS
PubMed
Google Scholar
Zhang ZY, Liu XJ, Li DW, Yu JL, Han CG. Rapid detection of Wheat yellow mosaic virus by reverse transcription loop-mediated isothermal amplification. Virol J. 2011;8:550. https://doi.org/10.1186/1743-422X-8-550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohki T, Netsu O, Kojima H, Sakai J, Onuki M, Maoka T, Shirako Y, Sasaya T. Biological and genetic diversity of Wheat yellow mosaic virus (genus Bymovirus). Phytopathology. 2014;104(3):313–9. https://doi.org/10.1094/PHYTO-06-13-0150-R.
Article
CAS
PubMed
Google Scholar
Inouye T. Filamentous particles as the causal agent of yellow mosaic disease of wheat. Nogaku Kenkyu. 1969;53:61–8.
Google Scholar
Namba S, Kashiwazaki S, Lu X, Tamura M, Tsuchizaki T. Complete nucleotide sequence of wheat yellow mosaic bymovirus genomic RNAs. Arch Virol. 1998;143(3):631–43.
Article
CAS
Google Scholar
Han C, Li D, Xing Y, Zhu K, Tian Z, Cai Z, Yu J, Liu Y. Wheat yellow mosaic virus widely occurring in wheat (Triticum aestivum) in China. Plant Dis. 2000;84(6):627–60. https://doi.org/10.1094/PDIS.2000.84.6.627.
Article
Google Scholar
Wang D, Yu C, Liu S, Wang G, Shi K, Li X, Yuan X. Structural alteration of a BYDV-like translation element (BTE) that attenuates p35 expression in three mild Tobacco bushy top virus isolates. Sci Rep. 2017;7(1):4213.
Article
Google Scholar
Geng G, Yu C, Li X, Yuan X. In Vitro transcription system based on nib of Wheat yellow mosaic virus (in Chinese). Acta Phytopathologica Sinica, 2018; accepted, DOI: https://doi.org/10.1039/c8mh00123e.
Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell. 2011;43(6):853–66. https://doi.org/10.1016/j.molcel.2011.08.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dreher TW. Functions of the 3′-untranslated regions of positive strand RNA viral genomes. Annu Rev Phytopathol. 1999;37:151–74. https://doi.org/10.1146/annurev.phyto.37.1.151.
Article
CAS
PubMed
Google Scholar
Barr JN, Fearns R. How RNA viruses maintain their genome integrity. J Gen Virol. 2010;91(Pt6):1373–87.
Article
CAS
Google Scholar
Bier K, York A, Fodor E. Cellular cap-binding proteins associate with influenza virus mRNAs. J Gen Virol. 2011;92(Pt7):1627–34.
Article
CAS
Google Scholar
Smyth RP, Smith MR, Jousset AC, Despons L, Laumond G, Decoville T, Cattenoz P, Moog C, Jossinet F, Mougel M, Paillart JC, von Kleist M, Marquet R. In cell mutational interference mapping experiment (in cell MIME) identifies the 5′ polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging. Nucl Acids Res. 2018;46(9):e57–7. https://doi.org/10.1093/nar/gky152.
Slomovic S, Fremder E, Staals RH, Pruijn GJ, Schuster G. Addition of poly(a) and poly(a)-rich tails during RNA degradation in the cytoplasm of human cells. Proc Natl Acad Sci. 2010;107(16):7407–12.
Article
CAS
Google Scholar
Weill L, Belloc E, Bava FA, Méndez R. Translational control by changes in poly(a) tail length: recycling mRNAs. Nat Struct Mol Biol. 2012;19(6):577–85. https://doi.org/10.1038/nsmb.2311.
Article
CAS
PubMed
Google Scholar
Nomoto A, Detjen B, Pozzatti R, Wimmer E. The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature. 1977;268(5617):208–13. https://doi.org/10.1038/268208a0.
Article
CAS
PubMed
Google Scholar
Virgen-Slane R, Rozovics JM, Fitzgerald KD, Ngo T, Chou W, van der Heden van Noort GJ, Filippov DV, Gershon PD, Semler BL. An RNA virus hijacks an incognito function of a DNA repair enzyme. Proc Natl Acad Sci. 2012;109(36):14634–9.
Article
CAS
Google Scholar
Langereis MA, Feng Q, Nelissen FH, Virgen-Slane R, van der Heden van Noort GJ, Maciejewski S, Filippov DV, Semler BL, van Delft FL, van Kuppeveld FJ. Modification of picornavirus genomic RNA using ‘click’ chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA. Nucl Acids Res. 2014;42(4):2473–82. https://doi.org/10.1093/nar/gkt1162.
Article
CAS
PubMed
Google Scholar
Gulevich AY, Yusupova RA, Drygin YF. VPg unlinkase, the phosphodiesterase that hydrolyzes the bond between VPg and picornavirus RNA: a minimal nucleic moiety of the substrate. Biochemistry(Mosc). 2002;67(6):615–21. https://doi.org/10.1023/A:1016124202274.
Article
CAS
PubMed
Google Scholar
Kahvejian A, Svitkin YV, Sukarieh R, M′Boutchou MN. Sonenberg N. Mammalian poly(a)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 2005; 19(1): 104–113, DOI: https://doi.org/10.1101/gad.1262905.
Kim YN, Makino S. Characterization of a murine coronavirus defective interfering RNA internal cis-acting replication signal. J Virol. 1995;69(8):4963–71.
CAS
PubMed
PubMed Central
Google Scholar
Pogany J, Fabian MR, White KA. Nagy PD. a replication silencer element in a plus-strand RNA virus. EMBO J. 2003;22(20):5602–11. https://doi.org/10.1093/emboj/cdg523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang G, Zhang J, Simon AE. Repression and derepression of minus strand synthesis in a plus-strand RNA virus replicon. J Virol. 2004;78(14):7619–33. https://doi.org/10.1128/JVI.78.14.7619-7633.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar