Turnbull C, Scott RH, Thomas E, Jones L, Murugaesu N, Pretty FB, Halai D, Baple E, Craig C, Hamblin A, Henderson S, Patch C, O’Neill A, Devereaux A, Smith K, Martin AR, Sosinsky A, McDonagh EM, Sultana R, Mueller M, Smedley D, Toms A, Dinh L, Fowler T, Bale M, Hubbard T, Rendon A, Hill S, Caulfield MJ. The 100 000 genomes project: bringing whole genome sequencing to the NHS. BMJ. 2018. https://doi.org/10.1136/bmj.k1687.
Article
Google Scholar
Luo Y, De Lange KM, Jostins L, Moutsianas L, Randall J, Kennedy NA, Lamb CA, McCarthy S, Ahmad T, Edwards C, Serra EG, Hart A, Hawkey C, Mansfield JC, Mowat C, Newman WG, Nichols S, Pollard M, Satsangi J, Simmons A, Tremelling M, Uhlig H, Wilson DC, Lee JC, Prescott NJ, Lees CW, Mathew CG, Parkes M, Barrett JC, Anderson CA. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat Genet. 2017. https://doi.org/10.1038/ng.3761.
Article
Google Scholar
Khera AV, Chaffin M, Zekavat SM, Collins RL, Roselli C, Natarajan P, Lichtman JH, D’onofrio G, Mattera J, Dreyer R, Spertus JA, Taylor KD, Psaty BM, Rich SS, Post W, Gupta N, Gabriel S, Lander E, Ida Chen YD, Talkowski ME, Rotter JI, Krumholz HM, Kathiresan S. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation. 2019. https://doi.org/10.1161/CIRCULATIONAHA.118.035658.
Article
Google Scholar
Cortés-Ciriano I, Lee JJK, Xi R, Jain D, Jung YL, Yang L, Gordenin D, Klimczak LJ, Zhang CZ, Pellman DS, Akdemir KC, Alvarez EG, Baez-Ortega A, Beroukhim R, Boutros PC, Bowtell DDL, Brors B, Burns KH, Campbell PJ, Chan K, Chen K, Cortés-Ciriano I, Dueso-Barroso A, Dunford AJ, Edwards PA, Estivill X, Etemadmoghadam D, Feuerbach L, Fink JL, Frenkel-Morgenstern M, Garsed DW, Gerstein M, Gordenin DA, Haan D, Haber JE, Hess JM, Hutter B, Imielinski M, Jones DTW, Ju YS, Kazanov MD, Klimczak LJ, Koh Y, Korbel JO, Kumar K, Lee EA, Lee JJK, Li Y, Lynch AG, Macintyre G, Markowetz F, Martincorena I, Martinez-Fundichely A, Miyano S, Nakagawa H, Navarro FCP, Ossowski S, Park PJ, Pearson JV, Puiggròs M, Rippe K, Roberts ND, Roberts SA, Rodriguez-Martin B, Schumacher SE, Scully R, Shackleton M, Sidiropoulos N, Sieverling L, Stewart C, Torrents D, Tubio JMC, Villasante I, Waddell N, Wala JA, Weischenfeldt J, Yang L, Yao X, Yoon SS, Zamora J, Zhang CZ. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 2020. https://doi.org/10.1038/s41588-019-0576-7.
Article
Google Scholar
Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. 2018. https://doi.org/10.1111/cas.13505.
Article
Google Scholar
Sangiovanni M, Granata I, Thind AS, Guarracino MR. From trash to treasure: detecting unexpected contamination in unmapped NGS data. BMC Bioinform. 2019. https://doi.org/10.1186/s12859-019-2684-x.
Article
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4. https://doi.org/10.1038/nature07540.
Article
CAS
Google Scholar
lita. proctor@ nih. gov Lita Proctor Jonathan LoTempio Aron Marquitz Phil Daschner Dan Xi Roberto Flores Liliana Brown Ryan Ranallo Padma Maruvada Karen Regan R. Dwayne Lunsford Michael Reddy Lis Caler, N.H.M.P.A.T.: A review of 10 years of human microbiome research activities at the us national institutes of health, fiscal years 2007–2016. Microbiome. 2019;7:1–19.
Dekaboruah E, Suryavanshi MV, Chettri D, Verma AK. Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch Microbiol. 2020. https://doi.org/10.1007/s00203-020-01931-x.
Article
Google Scholar
Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nature. 2018. https://doi.org/10.1038/nrmicro.2017.157.
Article
Google Scholar
Willis KA, Postnikoff CK, Freeman A, Rezonzew G, Nichols K, Gaggar A, Lal CV. The closed eye harbours a unique microbiome in dry eye disease. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-68952-w.
Article
Google Scholar
Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The healthy human blood microbiome: Fact or fiction? Front Cell Infect Microbiol. 2019. https://doi.org/10.3389/fcimb.2019.00148.
Article
Google Scholar
Schierwagen R, Alvarez-Silva C, Madsen MSA, Kolbe CC, Meyer C, Thomas D, Uschner FE, Magdaleno F, Jansen C, Pohlmann A, Praktiknjo M, Hischebeth GT, Molitor E, Latz E, Lelouvier B, Trebicka J, Arumugam M. Circulating microbiome in blood of different circulatory compartments. Gut. 2019. https://doi.org/10.1136/gutjnl-2018-316227.
Article
Google Scholar
Hornung BVH, Zwittink RD, Ducarmon QR, Kuijper EJ. Response to: ‘Circulating microbiome in blood of different circulatory compartments’ by Schierwagen et al. Gut. 2020. https://doi.org/10.1136/gutjnl-2019-318601.
Article
Google Scholar
Nunes Valença I, Silva-Pinto AC, Araújo da Silva Júnior W, Tadeu Covas D, Kashima S, Nanev Slavov S. Viral metagenomics in Brazilian multiply transfused patients with sickle cell disease as an indicator for blood transfusion safety. Transfus Clin Biol. 2020. https://doi.org/10.1016/j.tracli.2020.07.001.
Article
Google Scholar
Cordey S, Laubscher F, Hartley MA, Junier T, Keitel K, Docquier M, Guex N, Iseli C, Vieille G, Le Mercier P, Gleizes A, Samaka J, Mlaganile T, Kagoro F, Masimba J, Said Z, Temba H, Elbanna GH, Tapparel C, Zanella MC, Xenarios I, Fellay J, D’Acremont V, Kaiser L. Blood virosphere in febrile Tanzanian children. Emerg Microbes Infect. 2021. https://doi.org/10.1080/22221751.2021.1925161.
Article
Google Scholar
Bouquet J, Li T, Gardy JL, Kang X, Stevens S, Stevens J, VanNess M, Snell C, Potts J, Miller RR, Morshed M, McCabe M, Parker S, Uyaguari M, Tang P, Steiner T, Chan WS, De Souza AM, Mattman A, Patrick DM, Chiu CY. Whole blood human transcriptome and virome analysis of ME/CFS patients experiencing post-exertional malaise following cardiopulmonary exercise testing. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0212193.
Article
Google Scholar
Goodman JL. Marseillevirus, blood safety, and the human virome. J Infect Dis. 2013. https://doi.org/10.1093/infdis/jit291.
Article
Google Scholar
Vu DL, Cordey S, Simonetta F, Brito F, Docquier M, Turin L, van Delden C, Boely E, Dantin C, Pradier A, Roosnek E, Chalandon Y, Zdobnov EM, Masouridi-Levrat S, Kaiser L. Human pegivirus persistence in human blood virome after allogeneic haematopoietic stem-cell transplantation. Clin Microbiol Infect. 2019. https://doi.org/10.1016/j.cmi.2018.05.004.
Article
Google Scholar
Kapoor A, Kumar A, Simmonds P, Bhuva N, Chauhan LS, Lee B, Sall AA, Jin Z, Morse SS, Shaz B, Burbelo PD, Ian Lipkina W. Virome analysis of transfusion recipients reveals a novel human virus that shares genomic features with hepaciviruses and pegiviruses. mBio. 2015. https://doi.org/10.1128/mBio.01466-15.
Article
Google Scholar
Fahsbender E, Da-Costa AC, Gill DE, De Padua Milagres FA, Brustulin R, Monteiro FJC, Da Silva Rego MO, D’Athaide Ribeiro ES, Sabino EC, Delwart E. Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0229993.
Article
Google Scholar
Fernández-Ruiz M. Torque Teno virus load as a surrogate marker for the net state of immunosuppression: the beneficial side of the virome. Am J Transplant. 2020. https://doi.org/10.1111/ajt.15872.
Article
Google Scholar
Moustafa A, Xie C, Kirkness E, Biggs W, Wong E, Turpaz Y, Bloom K, Delwart E, Nelson KE, Venter JC, Telenti A. The blood DNA virome in 8,000 humans. PLoS Pathog. 2017. https://doi.org/10.1371/journal.ppat.1006292.
Article
Google Scholar
Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol. 2021. https://doi.org/10.1038/s41579-021-00535-6.
Article
Google Scholar
Weissenborn SJ, De Koning MNC, Wieland U, Quint WGV, Pfister HJ. Intrafamilial transmission and family-specific spectra of cutaneous betapapillomaviruses. J Virol. 2009. https://doi.org/10.1128/jvi.01338-08.
Article
Google Scholar
Omar M, Metwally M, El-Feky H, Ahmed I, Ismail MA, Idris A. Role of intrafamilial transmission in high prevalence of hepatitis C virus in Egypt. Hepat Med Evid Res. 2017. https://doi.org/10.2147/hmer.s129681.
Article
Google Scholar
Cladel NM, Jiang P, Li JJ, Peng X, Cooper TK, Majerciak V, Balogh KK, Meyer TJ, Brendle SA, Budgeon LR, et al. Papillomavirus can be transmitted through the blood and produce infections in blood recipients: evidence from two animal models. Emerg Microbes Infect. 2019;8(1):1108–21.
Article
CAS
Google Scholar
Kühl U, Lassner D, Wallaschek N, Gross UM, Krueger GRF, Seeberg B, Kaufer BB, Escher F, Poller W, Schultheiss HP. Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment. Eur J Heart Fail. 2015. https://doi.org/10.1002/ejhf.194.
Article
Google Scholar
Gravel A, Dubuc I, Morissette G, Sedlak RH, Jerome KR, Flamand L. Inherited chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the development of angina pectoris. Proc Natl Acad Sci USA. 2015. https://doi.org/10.1073/pnas.1502741112.
Article
Google Scholar
Ruzzo EK, Pérez-Cano L, Jung JY, Wang L, Kashef-Haghighi D, Hartl C, Singh C, Xu J, Hoekstra JN, Leventhal O, Leppä VM, Gandal MJ, Paskov K, Stockham N, Polioudakis D, Lowe JK, Prober DA, Geschwind DH. Inherited and de novo genetic risk for autism impacts shared networks. Cell. 2019;178(4):850–66. https://doi.org/10.1016/j.cell.2019.07.015.
Article
CAS
Google Scholar
Paskov K, Jung JY, Chrisman B, Stockham NT, Washington P, Varma M, Sun MW, Wall DP. Estimating sequencing error rates using families. BioData Min. 2021. https://doi.org/10.1186/s13040-021-00259-6.
Article
Google Scholar
Chrisman B, Varma M, Washington P, Paskov K, Stockham N, Jung JY, Wall DP. Analysis of sex and recurrence ratios in simplex and multiplex autism spectrum disorder implicates sex-specific alleles as inheritance mechanism. In: Proceedings—2018 IEEE international conference on bioinformatics and biomedicine, BIBM 2018, pp. 1470–7; 2019. https://doi.org/10.1109/BIBM.2018.8621554.
Chrisman BS, Paskov KM, He C, Jung JY, Stockham N, Washington PY, Wall DP. A method for localizing non-reference sequences to the human genome. In: Pacific symposium on biocomputing, vol 27, pp. 313–24; 2022.
Chrisman B, He C, Jung J-Y, Stockham N, Paskov K, Washington P, Wall DP. The human “contaminome’’: bacterial, viral, and computational contamination in whole genome sequences from 1,000 families. Sci Rep. 2022;12:9863.
Article
CAS
Google Scholar
Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, Lund TC, Tolar J, De Meirleir K, Montoya JG, Komaroff AL, Ambros PF, Medveczky PG. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci USA. 2010. https://doi.org/10.1073/pnas.0913586107.
Article
Google Scholar
Arbuckle JH, Pantry SN, Medveczky MM, Prichett J, Loomis KS, Ablashi D, Medveczky PG. Mapping the telomere integrated genome of human herpesvirus 6A and 6B. Virology. 2013. https://doi.org/10.1016/j.virol.2013.03.030.
Article
Google Scholar
Collin V, Gravel A, Kaufer BB, Flamand L. The promyelocytic leukemia protein facilitates human herpesvirus 6B chromosomal integration, immediate-early 1 protein multiSUMOylation and its localization at telomeres. PLoS Pathog. 2020. https://doi.org/10.1371/journal.ppat.1008683.
Article
Google Scholar
Gravel A, Dubuc I, Wallaschek N, Gilbert-Girard S, Collin V, Hall-Sedlak R, Jerome KR, Mori Y, Carbonneau J, Boivin G, Kaufer BB, Flamand L. Cell culture systems to study human herpesvirus 6A/B chromosomal integration. J Virol. 2017. https://doi.org/10.1128/jvi.00437-17.
Article
Google Scholar
Wallaschek N, Sanyal A, Pirzer F, Gravel A, Mori Y, Flamand L, Kaufer BB. The telomeric repeats of human herpesvirus 6A (HHV-6A) are required for efficient virus integration. PLoS Pathog. 2016. https://doi.org/10.1371/journal.ppat.1005666.
Article
Google Scholar
Kamranvar S, Chen X, Masucci M. Telomere dysfunction and activation of alternative lengthening of telomeres in b-lymphocytes infected by Epstein–Barr virus. Oncogene. 2013;32(49):5522–30.
Article
CAS
Google Scholar
Kamranvar SA, Masucci MG. Regulation of telomere homeostasis during Epstein–Barr virus infection and immortalization. Viruses. 2017;9(8):217.
Article
Google Scholar
Emery VC, Clark DA. HHV-6A, 6B, and 7: persistence in the population, epidemiology and transmission. In: Human herpesviruses: biology, therapy, and immunoprophylaxis; 2007. https://doi.org/10.1017/CBO9780511545313.050.
Kaufer BB, Jarosinski KW, Osterrieder N. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J Exp Med. 2011. https://doi.org/10.1084/jem.20101402.
Article
Google Scholar
Prusty BK, Gulve N, Rasa S, Murovska M, Hernandez PC, Ablashi DV. Possible chromosomal and germline integration of human herpesvirus 7. J Gen Virol. 2017. https://doi.org/10.1099/jgv.0.000692.
Article
Google Scholar
Wood ML, Veal CD, Neumann R, Suárez NM, Nichols J, Parker AJ, Martin D, Romaine S, Codd V, Samani NJ, Voors AA, Tomaszewski M, Flamand L, Davison AJ, Royle NJ. Variation in human herpesvirus 6B telomeric integration, excision and transmission between tissues and individuals. eLife. 2021. https://doi.org/10.7554/eLife.70452.
Article
Google Scholar
of Health, D., Care, S.: 100,000 whole genomes sequenced in the NHS - GOV.UK. https://www.gov.uk/government/news/100000-whole-genomes-sequenced-in-the-nhs. Accessed 02 Dec 2020.
Aswad A, Aimola G, Wight D, Roychoudhury P, Zimmermann C, Hill J, Lassner D, Xie H, Huang ML, Parrish NF, Schultheiss HP, Venturini C, Lager S, Smith GCS, Charnock-Jones DS, Breuer J, Greninger AL, Kaufer BB. Evolutionary history of endogenous human herpesvirus 6 reflects human migration out of Africa. Mol Biol Evol. 2021. https://doi.org/10.1093/molbev/msaa190.
Article
Google Scholar
Zhang E, Bell AJ, Wilkie GS, Suárez NM, Batini C, Veal CD, Armendáriz-Castillo I, Neumann R, Cotton VE, Huang Y, Porteous DJ, Jarrett RF, Davison AJ, Royle NJ. Inherited chromosomally integrated human herpesvirus 6 genomes are ancient, intact, and potentially able to reactivate from telomeres. J Virol. 2017. https://doi.org/10.1128/jvi.01137-17.
Article
Google Scholar
Greninger AL, Knudsen GM, Roychoudhury P, Hanson DJ, Sedlak RH, Xie H, Guan J, Nguyen T, Peddu V, Boeckh M, Huang ML, Cook L, Depledge DP, Zerr DM, Koelle DM, Gantt S, Yoshikawa T, Caserta M, Hill JA, Jerome KR. Comparative genomic, transcriptomic, and proteomic reannotation of human herpesvirus 6. BMC Genom. 2018. https://doi.org/10.1186/s12864-018-4604-2.
Article
Google Scholar
Isegawa Y, Mukai T, Nakano K, Kagawa M, Chen J, Mori Y, Sunagawa T, Kawanishi K, Sashihara J, Hata A, Zou P, Kosuge H, Yamanishi K. Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J Virol. 1999. https://doi.org/10.1128/jvi.73.10.8053-8063.1999.
Article
Google Scholar
Spandole S, Cimponeriu D, Berca LM, Mihăescu G. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch Virol. 2015. https://doi.org/10.1007/s00705-015-2363-9.
Article
Google Scholar
Kishore J, Kapoor A. Erythrovirus B19 infection in humans. 2000.
Dewhurst S. Human herpesvirus type 6 and human herpesvirus type 7 infections of the central nervous system. In: Herpes; 2004.
Telford M, Navarro A, Santpere G. Whole genome diversity of inherited chromosomally integrated HHV-6 derived from healthy individuals of diverse geographic origin. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-21645-x.
Article
Google Scholar
Juillard F, Tan M, Li S, Kaye KM. Kaposi’s sarcoma herpesvirus genome persistence. Front Microbiol. 2016. https://doi.org/10.3389/fmicb.2016.01149.
Article
Google Scholar
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019. https://doi.org/10.1186/s13059-019-1891-0.
Article
Google Scholar
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkv1189.
Article
Google Scholar
Peddu V, Dubuc I, Gravel A, Xie H, Huang M-L, Tenenbaum D, Jerome KR, Tardif J-C, Dubé M-P, Flamand L, Greninger AL. Inherited chromosomally integrated human herpesvirus 6 demonstrates tissue-specific RNA expression in vivo that correlates with an increased antibody immune response. J Virol. 2019. https://doi.org/10.1128/jvi.01418-19.
Article
Google Scholar
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. 2009;537:39–64. https://doi.org/10.1007/978-1-59745-251-9_3.
Article
CAS
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007. https://doi.org/10.1093/bioinformatics/btm404.
Article
Google Scholar
McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013. https://doi.org/10.1093/nar/gkt376.
Article
Google Scholar
Ortiz EM. vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. (Zenodo). Technical report; 2019.
Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, De Hoon MJL. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009. https://doi.org/10.1093/bioinformatics/btp163.
Article
Google Scholar