Whitelaw S, Mamas MA, Topol E, Van Spall HGC. Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit Heal. 2020;2:e435–40.
Article
Google Scholar
Hamed M, El-Hasab M, Mansour FR. Direct acting anti-hepatitis C combinations as potential COVID-19 protease inhibitors. VirusDisease. 2021;32:279–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ilkhani H, Hedayat N, Farhad S. Novel approaches for rapid detection of COVID-19 during the pandemic: A review. Anal Biochem. 2021;634:114362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manekiya M, Donelli M. Monitoring the covid-19 diffusion by combining wearable biosensors and smartphones. Prog Electromagn Res M. 2021;100:13–21.
Article
CAS
Google Scholar
Suresh Kumar S, Dashtipour K, Abbasi QH, Imran MA, Ahmad W. A review on wearable and contactless sensing for COVID-19 with policy challenges. Front Commun Netw. 2021;2:1–10.
Google Scholar
Mirjalali S, Peng S, Fang Z, Wang C, Wu S. Wearable sensors for remote health monitoring: potential applications for early diagnosis of Covid-19. Adv Mater Technol. 2021;7:2100545.
Article
PubMed
PubMed Central
Google Scholar
Abdallah IA, Hammad SF, Bedair A, Elshafeey AH, Mansour FR. Determination of favipiravir in human plasma using homogeneous liquid–liquid microextraction followed by HPLC/UV. Bioanalysis. 2022;14:205–16.
Article
CAS
PubMed
Google Scholar
Abdallah IA, Hammad SF, Bedair A, Mansour FR. Menthol-assisted homogenous liquid-liquid microextraction for HPLC/UV determination of favipiravir as an antiviral for COVID-19 in human plasma. J Chromatogr B. 2022;1189:123087.
Article
CAS
Google Scholar
Abdallah IA, Hammad SF, Bedair A, Abdelaziz MA, Danielson ND, Elshafeey AH, et al. A gadolinium-based magnetic ionic liquid for supramolecular dispersive liquid–liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Biomed Chromatogr. 2022;36:1–10.
Article
Google Scholar
La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020;41:483–99.
Article
PubMed
PubMed Central
Google Scholar
Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14:3822–35.
Article
CAS
PubMed
Google Scholar
Crozier A, Rajan S, Buchan I, McKee M. Put to the test: use of rapid testing technologies for covid-19. BMJ. 2021;372:n208.
Article
PubMed
Google Scholar
Adigal SS, Rayaroth NV, John RV, Pai KM, Bhandari S, Mohapatra AK, et al. Expert review of molecular diagnostics a review on human body fluids for the diagnosis of viral infections: scope for rapid detection of. Expert Rev Mol Diagn. 2021;21:31–42.
Article
CAS
PubMed
Google Scholar
Jadhav SA, Biji P, Panthalingal MK, Murali Krishna C, Rajkumar S, Joshi DS, et al. Development of integrated microfluidic platform coupled with surface-enhanced Raman spectroscopy for diagnosis of COVID-19. Med Hypotheses. 2021;146:110356.
Article
CAS
PubMed
Google Scholar
Lukose J, Chidangil S, George SD. Biosensors and bioelectronics optical technologies for the detection of viruses like COVID-19: progress and prospects. Biosens Bioelectron. 2021;178:113004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlomagno C, Bertazioli D, Gualerzi A, Picciolini S, Banfi PI, Lax A, et al. COVID-19 salivary Raman fingerprint: innovative approach for the detection of current and past SARS-CoV-2 infections. Sci Rep. 2021;11:4943.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nogueira MS, Leal LB, Macarini W, Pimentel RL, Muller M, Vassallo PF, et al. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy and machine learning. Sci Rep. 2021;11:1–13.
CAS
Google Scholar
Saviñon-Flores F, Méndez E, López-Castaños M, Carabarin-Lima A, López-Castaños KA, González-Fuentes MA, et al. A review on SERS-based detection of human virus infections: influenza and coronavirus. Biosensors. 2021;11:66.
Article
PubMed
PubMed Central
Google Scholar
Gowri A, Ashwin Kumar N, Suresh Anand BS. Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19 – a minireview. TrAC Trends Anal Chem. 2021;137:116205.
Article
CAS
Google Scholar
Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, Del Campo R, Ciapponi A, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PLoS ONE. 2020;15:e0242958.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, et al. Development and potential usefulness of the COVID-19 Ag respi-strip diagnostic assay in a pandemic context. Front Med. 2020;7:225.
Article
Google Scholar
Afroj S, Britnell L, Hasan T, Andreeva DV, Novoselov KS, Karim N. graphene-based technologies for tackling COVID-19 and future pandemics. Adv Funct Mater. 2021;31:2107407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson JB, Naiker M. Seeing red: a review of the use of near-infrared spectroscopy (NIRS) in entomology spectroscopy (NIRS) in entomology. Appl Spectrosc Rev. 2020;55:810–39.
Article
Google Scholar
Lyu W, Teng H, Wu C, Zhang X, Guo X, Yang X, et al. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection. Nanoscale. 2021;13:12720–6.
Article
PubMed
Google Scholar
Fernandes JN, dos Santos LMB, Chouin-Carneiro T, Pavan MG, Garcia GA, David MR, et al. Rapid, noninvasive detection of Zika virus in Aedes aegypti mosquitoes by near-infrared spectroscopy. Sci Adv. 2018;4:4–10.
Article
Google Scholar
Zhang Y, Yurdakul C, Devaux AJ, Wang L, Xu XG, Connor JH, et al. Vibrational spectroscopic detection of a single virus by mid-infrared photothermal microscopy. Anal Chem. 2021;93:4100–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan RS, Rehman IU. Spectroscopy as a tool for detection and monitoring of Coronavirus (COVID-19). Expert Rev Mol Diagn. 2020;20:647–9.
Article
CAS
PubMed
Google Scholar
Stump MJ, Fleming RC, Gong W, Jaber AJ, Jones JJ, Surber CW, et al. Matrix-assisted laser desorption mass spectrometry. Appl Spectrosc Rev. 2002;37:275–303.
Article
CAS
Google Scholar
Zachertowska A, Brewer D, Evans DH. MALDI-TOF mass spectroscopy detects the capsid structural instabilities created by deleting the myxoma virus cupro-zinc SOD1 homolog M131R. J Virol Methods. 2004;122:63–72.
Article
CAS
PubMed
Google Scholar
Chen H, Gill A, Dove BK, Emmett SR, Kemp CF, Ritchie MA, et al. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J Virol. 2005;79:1164–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alizadeh M, Yousefi L, Pakdel F, Ghotaslou R, Rezaee MA, Khodadadi E, et al. MALDI-TOF mass spectroscopy applications in clinical microbiology. Adv Pharmacol Pharm Sci. 2021;2021:1–8.
Article
Google Scholar
Shahzad A, Edetsberger M, Koehler G. Fluorescence spectroscopy : an emerging excellent diagnostic tool in medical sciences. Appl Spectrosc Rev. 2010;45(1):1–11.
Article
CAS
Google Scholar
Madurani KA, Suprapto S, Syahputra MY, Puspita I, Masudi A, Rizqi HD, et al. Review—recent development of detection methods for controlling COVID-19 outbreak. J Electrochem Soc. 2021;168:037511.
Article
CAS
Google Scholar
El-Malla SF, Elattar RH, Kamal AH, Mansour FR. A highly sensitive switch-on spectrofluorometric method for determination of ascorbic acid using a selective eco-friendly approach. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;270:120802.
Article
CAS
Google Scholar
Wu Q, Zhou L, Sun X, Yan Z, Hu C, Wu J, et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep. 2017;7:9110.
Article
PubMed
PubMed Central
Google Scholar
Schlagenhauf-Lawlor P, Gautret P, Hagmann S, Cohen A, Leder K, Patel D. Travel medicine and infectious disease editor-in-chief. 2019;9:18–9.
Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42:493–541.
Article
CAS
Google Scholar
Goulart ACC, Zângaro RA, Carvalho HC, Silveira L. Diagnosing COVID-19 in human sera with detected immunoglobulins IgM and IgG by means of Raman spectroscopy. J Raman Spectrosc. 2021. https://doi.org/10.1002/jrs.6235.
Article
PubMed
PubMed Central
Google Scholar
Ember K, Daoust F, Mahfoud M, Dallaire F. Saliva-based detection of COVID-19 infection in a real-world setting using reagent-free Raman spectroscopy and machine learning. J Biomed Opt. 2021;27(2):025002.
Google Scholar
Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2.
Article
CAS
Google Scholar
Ryzhikova E, Kazakov O, Halamkova L, Celmins D, Malone P, Molho E, et al. Raman spectroscopy of blood serum for Alzheimer’s disease diagnostics: specificity relative to other types of dementia. J Biophotonics. 2015;8:584–96.
Article
PubMed
Google Scholar
Sahu A, Dalal K, Naglot S, Aggarwal P, Murali KC. Serum based diagnosis of asthma using raman spectroscopy: an early phase pilot study. PLoS ONE. 2013;8:e78921.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rehman A, Anwar S, Firdous S, Ahmed M, Rasheed R, Nawaz M. Dengue blood analysis by Raman spectroscopy. Laser Phys. 2012;22:1085–9.
Article
CAS
Google Scholar
Sanchez JE, Jaramillo SA, Settles E, Velazquez Salazar JJ, Lehr A, Gonzalez J, et al. Detection of SARS-CoV-2 and its S and N proteins using surface enhanced Raman spectroscopy. RSC Adv. 2021;11:25788–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huck CW. Advances of infrared spectroscopy in natural product research. Phytochem Lett. 2015;11:384–93.
Article
CAS
Google Scholar
Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heraud P, Chatchawal P, Wongwattanakul M, Tippayawat P, Doerig C, Jearanaikoon P, et al. Infrared spectroscopy coupled to cloud-based data management as a tool to diagnose malaria: a pilot study in a malaria-endemic country. Malar J. 2019;18:1–11.
Article
Google Scholar
Roy S, Perez-Guaita D, Bowden S, Heraud P, Wood BR. Spectroscopy goes viral: diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy. Clin Spectrosc. 2019;1:100001.
Article
Google Scholar
Barauna VG, Singh MN, Barbosa LL, Marcarini WD, Vassallo PF, Mill JG, et al. Ultrarapid on-site detection of SARS-CoV-2 infection using simple ATR-FTIR spectroscopy and an analysis algorithm: high sensitivity and specificity. Anal Chem. 2021;93:2950–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood BR, Kochan K, Bedolla DE, Salazar-Quiroz N, Grimley SL, Perez-Guaita D, et al. Infrared based saliva screening test for COVID-19. Angew Chemie. 2021;133:17239–44.
Article
Google Scholar
Nachtigall FM, Pereira A, Trofymchuk OS, Santos LS. Detection of SARS-CoV-2 in nasal swabs using MALDI-MS. Nat Biotechnol. 2020;38:1168–73.
Article
CAS
PubMed
Google Scholar
Mir JM, Khan MW, Shalla AH, Maurya RC. A Nonclinical spectroscopic approach for diagnosing covid-19: a concise perspective. J Appl Spectrosc. 2021;88:765–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitane DL, Loukman S, Marchoudi N, Fernandez-Galiana A, El Ansari FZ, Jouali F, et al. A simple and fast spectroscopy-based technique for Covid-19 diagnosis. Sci Rep. 2021;11:1–11.
Article
Google Scholar
Martinez-Cuazitl A, Vazquez-Zapien GJ, Sanchez-Brito M, Limon-Pacheco JH, Guerrero-Ruiz M, Garibay-Gonzalez F, et al. ATR-FTIR spectrum analysis of saliva samples from COVID-19 positive patients. Sci Rep. 2021;11:19980.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guleken Z, Jakubczyk P, Wiesław P, Krzysztof P, Bulut H, Öten E, et al. Characterization of Covid-19 infected pregnant women sera using laboratory indexes, vibrational spectroscopy, and machine learning classifications. Talanta. 2021;237:122916.
Article
PubMed
PubMed Central
Google Scholar
Banerjee A, Gokhale A, Bankar R, Palanivel V, Salkar A, Robinson H, et al. Rapid classification of COVID-19 severity by ATR-FTIR spectroscopy of plasma samples. Anal Chem. 2021;93:10391–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Instrumentation for Fluorescence Spectroscopy. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA, 2019; 27–61. https://doi.org/10.1007/978-0-387-46312-4_2
Fardiyah Q, Ersam T, Suyanta SA, Suprapto KF. New potential and characterization of Andrographis paniculata L. Ness plant extracts as photoprotective agent. Arab J Chem. 2020;13:8888–97.
Article
CAS
Google Scholar
Rong Z, Wang Q, Sun N, Jia X, Wang K, Xiao R, et al. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta. 2019;1055:140–7.
Article
CAS
PubMed
Google Scholar
Chen S, Chen L, Luo H, Sun T, Chen J, Ye F, et al. Enzymatic activity characterization of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer technique1. Acta Pharmacol Sin. 2005;26:99–106.
Article
PubMed
Google Scholar
Huang JC, Chang Y-F, Chen K-H, Su L-C, Lee C-W, Chen C-C, et al. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosens Bioelectron. 2009;25:320–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diao B, Wen K, Chen J, Liu Y, Yuan Z, Han C, et al. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. medRxiv. 2020.
Rajawat J, Jhingan G. Mass spectroscopy. Data process. Handb. Complex Biol. Data Sources. 2019.
Yates JR. Mass spectrometry. Trends Genet. 2000;16:5–8.
Article
CAS
PubMed
Google Scholar
Griffiths WJ, Wang Y. Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev. 2009;38:1882.
Article
CAS
PubMed
Google Scholar
Mahmud I, Garrett TJ. Mass Spectrometry techniques in emerging pathogens studies: COVID-19 perspectives. J Am Soc Mass Spectrom. 2020;31:2013–24.
Article
CAS
PubMed
Google Scholar
Ihling C, Tänzler D, Hagemann S, Kehlen A, Hüttelmaier S, Arlt C, et al. Mass spectrometric identification of SARS-CoV-2 proteins from gargle solution samples of COVID-19 patients. J Proteome Res. 2020;19:4389–92.
Article
CAS
PubMed
Google Scholar
Sen R. High-throughput approaches of diagnosis and therapies for COVID-19: antibody panels, proteomics and metabolomics. Futur Drug Discov. 2021;3:FDD55.
Article
Google Scholar
Wu D, Shu T, Yang X, Song J-X, Zhang M, Yao C, et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl Sci Rev. 2020;7:1157–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Migaud M, Gandotra S, Chand HS, Gillespie MN, Thannickal VJ, Langley RJ. Metabolomics to predict antiviral drug efficacy in COVID-19. Am J Respir Cell Mol Biol. 2020;63:396–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020;583:469–72.
Article
CAS
PubMed
Google Scholar
Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020;182:59-72.e15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Shang Y, Ren Y, Bie Y, Qiu Y, Yuan Y, et al. Omics study reveals abnormal alterations of breastmilk proteins and metabolites in puerperant women with COVID-19. Signal Transduct Target Ther. 2020;5:247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian W, Zhang N, Jin R, Feng Y, Wang S, Gao S, et al. Immune suppression in the early stage of COVID-19 disease. Nat Commun. 2020;11:5859.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stavrakaki SM, Mckenzie J, Mcgill D, Koguna H, Kinross J, Takats Z. Rapid detection of SARS-CoV2 by Ambient Mass Spectrometry Techniques Authors. MedRxiv. 2020
De Silva IW, Nayek S, Singh V, Reddy J, Granger JK, Verbeck GF. Paper spray mass spectrometry utilizing Teslin® substrate for rapid detection of lipid metabolite changes during COVID-19 infection. Analyst. 2020;145:5725–32.
Article
PubMed
Google Scholar
Grassin-Delyle S, Roquencourt C, Moine P, Saffroy G, Carn S, Heming N, et al. Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study. EBioMedicine. 2021;63:103154.
Article
CAS
PubMed
Google Scholar
Fernández-Peralbo MA, Calderón Santiago M, Priego-Capote F, Luque de Castro MD. Study of exhaled breath condensate sample preparation for metabolomics analysis by LC–MS/MS in high resolution mode. Talanta. 2015;144:1360–9.
Article
PubMed
Google Scholar
Yuan Z-C, Hu B. Mass spectrometry-based human breath analysis: towards COVID-19 diagnosis and research. J Anal Test. 2021;5:287–97.
Article
PubMed
PubMed Central
Google Scholar
Ma J, Qi X, Chen H, Li X, Zhang Z, Wang H, et al. Exhaled breath is a significant source of SARS-CoV-2 emission. medRxiv. 2020;1–8.
Mougang YK, Di Zazzo L, Minieri M, Capuano R, Catini A, Legramante JM, et al. Sensor array and gas chromatographic detection of the blood serum volatolomic signature of COVID-19. iScience. 2021;24:102851.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng H, Jin S, Li T, Ying W, Ying B, Chen D, et al. Metabolomics reveals sex-specific metabolic shifts and predicts the duration from positive to negative in non-severe COVID-19 patients during recovery process. Comput Struct Biotechnol J. 2021;19:1863–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan DJ, Toomey S, Madden SF, Casey M, Breathnach OS, Morris PG, et al. Use of exhaled breath condensate (EBC) in the diagnosis of SARS-COV-2 (COVID-19). Thorax. 2021;76:86–8.
Article
PubMed
Google Scholar
Maier T, Klepel S, Renner U, Kostrzewa M. Fast and reliable MALDI-TOF MS–based microorganism identification. Nat Methods. 2006;3:i–ii.
Article
CAS
Google Scholar
Calderaro A, Arcangeletti M-C, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep. 2015;4:6803.
Article
Google Scholar
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:1–16.
Article
Google Scholar
Kriegsmann J, Casadonte R, Kriegsmann K, Longuespée R, Kriegsmann M. Mass spectrometry in pathology – Vision for a future workflow. Pathol - Res Pract. 2018;214:1057–63.
Article
CAS
PubMed
Google Scholar
Yan L, Yi J, Huang C, Zhang J, Fu S, Li Z, et al. Rapid detection of COVID-19 using MALDI-TOF-based serum peptidome profiling. Anal Chem. 2021;93:4782–7.
Article
CAS
PubMed
Google Scholar
Alsaeed B, Mansour FR. Distance-based paper microfluidics; principle, technical aspects and applications. Microchem J. 2020;155:104664.
Article
CAS
Google Scholar
Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip. Micromachines. 2020;11:599.
Article
PubMed Central
Google Scholar
Whitesides GM. What comes next? Lab Chip. 2011;11:191–3.
Article
CAS
PubMed
Google Scholar
Yue R, Li Z, Wang G, Li J, Ma N. Logic sensing of MicroRNA in living cells using DNA-programmed nanoparticle network with high signal gain. ACS Sensors. 2019;4:250–6.
Article
CAS
PubMed
Google Scholar
Yuan X, Yang C, He Q, Chen J, Yu D, Li J, et al. Current and perspective diagnostic techniques for COVID-19. ACS Infect Dis. 2020;6:1998–2016.
Article
PubMed
PubMed Central
Google Scholar
El-Malla SF, Elshenawy EA, Hammad SF, Mansour FR. N-Doped carbon dots as a fluorescent nanosensor for determination of colchicine based on inner filter effect. J Fluoresc. 2021;31:675–84.
Article
CAS
PubMed
Google Scholar
El-Malla SF, Elshenawy EA, Hammad SF, Mansour FR. Rapid microwave synthesis of N, S-doped carbon quantum dots as a novel turn off-on sensor for label-free determination of copper and etidronate disodium. Anal Chim Acta. 2022;1197:339491.
Article
CAS
PubMed
Google Scholar
Yao Z, Zhang Q, Zhu W, Galluzzi M, Zhou W, Li J, et al. Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. Nanoscale. 2021;13:10133–42.
Article
CAS
PubMed
Google Scholar
Zhang L, Xiao M, Wang Y, Peng S, Chen Y, Zhang D, et al. Fast screening and primary diagnosis of COVID-19 by ATR–FT-IR. Anal Chem. 2021;93:2191–9.
Article
CAS
PubMed
Google Scholar
Huang J, Wen J, Zhou M, Ni S, Le W, Chen G, et al. On-Site detection of SARS-CoV-2 antigen by deep learning-based surface-enhanced Raman spectroscopy and its biochemical foundations. Anal Chem. 2021;93:9174–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goulart ACC, Silveira L, Carvalho HC, Dorta CB, Pacheco MTT, Zangaro RA. Diagnosing COVID-19 in human serum using Raman spectroscopy: a preliminary study. medRxiv. 2021;2021.08.09.21261798.
Ibrahim W, Cordell RL, Wilde MJ, Richardson M, Carr L, Sundari Devi Dasi A, et al. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography–mass spectrometry. ERJ Open Res. 2021;7:00139–2021.
Article
PubMed
PubMed Central
Google Scholar
Lazari LC, Ghilardi FDR, Rosa-Fernandes L, Assis DM, Nicolau JC, Santiago VF, et al. Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19. Life Sci Alliance. 2021;4:e202000946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran NK, Howard T, Walsh R, Pepper J, Loegering J, Phinney B, et al. Novel application of automated machine learning with MALDI-TOF-MS for rapid high-throughput screening of COVID-19: a proof of concept. Sci Rep. 2021;11:8219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv L, Jiang H, Chen Y, Gu S, Xia J, Zhang H, et al. The faecal metabolome in COVID-19 patients is altered and associated with clinical features and gut microbes. Anal Chim Acta. 2021;1152:338267.
Article
CAS
PubMed
PubMed Central
Google Scholar