Feingold KR. Introduction to lipids and lipoproteins. In: Introduction to lipids and lipoproteins. Endotext. MDtext.com, Inc, South Dartmouth. 2021.
Catapano AL. Atherogenic lipoproteins as treatment targets. Nat Rev Cardiol. 2018;15:75–6. https://doi.org/10.1038/nrcardio.2017.221.
Article
CAS
PubMed
Google Scholar
Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21:312–8. https://doi.org/10.1097/MOL.0b013e32833bcdc1.
Article
CAS
PubMed
Google Scholar
Jomard A, Osto E. High density lipoproteins: metabolism, function, and therapeutic potential. Front Cardiovasc Med. 2020;7:39. https://doi.org/10.3389/fcvm.2020.00039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang AS, Kingwell BA. Rethinking good cholesterol: a clinicians’ guide to understanding HDL. Lancet Diabetes Endocrinol. 2019;7:575–82. https://doi.org/10.1016/S2213-8587(19)30003-8.
Article
PubMed
Google Scholar
Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–478. https://doi.org/10.1152/physrev.00047.2003.
Article
CAS
PubMed
Google Scholar
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL composition, heart failure, and its comorbidities. Front Cardiovasc Med. 2022;9:846990. https://doi.org/10.3389/fcvm.2022.846990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heaton NS, Randall G. Multifaceted roles for lipids in viral infection. Trends Microbiol. 2011;19:368–75. https://doi.org/10.1016/j.tim.2011.03.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ketter E, Randall G. Virus impact on lipids and membranes. Annu Rev Virol. 2019;6:319–40. https://doi.org/10.1146/annurev-virology-092818-015748.
Article
CAS
PubMed
Google Scholar
Bezgovsek J, Gulbins E, Friedrich S-K, et al. Sphingolipids in early viral replication and innate immune activation. Biol Chem. 2018;399:1115–23. https://doi.org/10.1515/hsz-2018-0181.
Article
CAS
PubMed
Google Scholar
Schoggins JW, Randall G. Lipids in innate antiviral defense. Cell Host Microbe. 2013;14:379–85. https://doi.org/10.1016/j.chom.2013.09.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grunfeld C, Pang M, Doerrler W, et al. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1992;74:1045–52. https://doi.org/10.1210/jcem.74.5.1373735.
Article
CAS
PubMed
Google Scholar
Marin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JC. Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS ONE. 2019;14:e0214245. https://doi.org/10.1371/journal.pone.0214245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apostolou F, Gazi IF, Lagos K, et al. Acute infection with Epstein-Barr virus is associated with atherogenic lipid changes. Atherosclerosis. 2010;212:607–13. https://doi.org/10.1016/j.atherosclerosis.2010.06.006.
Article
CAS
PubMed
Google Scholar
Lima WG, Souza NA, Fernandes SOA, et al. Serum lipid profile as a predictor of dengue severity: a systematic review and meta-analysis. Rev Med Virol. 2019. https://doi.org/10.1002/rmv.2056.
Article
PubMed
Google Scholar
von Eckardstein A, Kardassis D. High density lipoproteins from biological understanding to clinical exploitation. In: Handbook of experimental pharmacology. Springer, New York; 2015.
Feeney ER. HIV and HAART-associated dyslipidemia. TOCMJ. 2011;5:49–63. https://doi.org/10.2174/1874192401105010049.
Article
PubMed
PubMed Central
Google Scholar
Friis-Møller N, Weber R, Reiss P, et al. Cardiovascular disease risk factors in HIV patients—association with antiretroviral therapy. Results DAD Study AIDS. 2003;17:1179–93. https://doi.org/10.1097/00002030-200305230-00010.
Article
PubMed
Google Scholar
Moreno JA, Beltran LM, Rubio-Navarro A, et al. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus. VHRM. 2015. https://doi.org/10.2147/VHRM.S65885.
Article
Google Scholar
Zhang F, Sodroski C, Cha H, et al. Infection of hepatocytes with HCV increases cell surface levels of heparan sulfate proteoglycans, uptake of cholesterol and lipoprotein, and virus entry by up-regulating SMAD6 and SMAD7. Gastroenterology. 2017;152:257-270.e7. https://doi.org/10.1053/j.gastro.2016.09.033.
Article
CAS
PubMed
Google Scholar
Popescu C, Dubuisson J. Role of lipid metabolism in hepatitis C virus assembly and entry. Biol Cell. 2010;102:63–74. https://doi.org/10.1042/BC20090125.
Article
CAS
Google Scholar
Gazi IF, Elisaf MS. Effect of infection on lipid profile: focus on Epstein-Barr virus. Clin Lipidol. 2010;5:607–10. https://doi.org/10.2217/clp.10.53.
Article
CAS
Google Scholar
Speer T, Zewinger S. High-density lipoprotein (HDL) and infections: a versatile culprit. Eur Heart J. 2018;39:1191–3. https://doi.org/10.1093/eurheartj/ehx734.
Article
PubMed
Google Scholar
Madsen CM, Varbo A, Tybjærg-Hansen A, et al. U-shaped relationship of HDL and risk of infectious disease: two prospective population-based cohort studies. Eur Heart J. 2018;39:1181–90. https://doi.org/10.1093/eurheartj/ehx665.
Article
CAS
PubMed
Google Scholar
Li G-M, Li Y-G, Yamate M, et al. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infect. 2007;9:96–102. https://doi.org/10.1016/j.micinf.2006.10.015.
Article
CAS
PubMed
Google Scholar
Baglivo M, Baronio M, Natalini G, et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? SARS-COV-2 lipid-dependent attachment to host cells. Acta Bio Med Atenei Parm 2020; 91:161–164. https://doi.org/10.23750/abm.v91i1.9402.
Rezaei A, Neshat S, Heshmat-Ghahdarijani K. Alterations of lipid profile in COVID-19: a narrative review. Curr Probl Cardiol. 2022;47:100907. https://doi.org/10.1016/j.cpcardiol.2021.100907.
Article
PubMed
Google Scholar
Abu-Farha M, Thanaraj TA, Qaddoumi MG, et al. The role of lipid metabolism in COVID-19 virus infection and as a drug target. IJMS. 2020;21:3544. https://doi.org/10.3390/ijms21103544.
Article
CAS
PubMed Central
Google Scholar
Ressaire Q, Dudoignon E, Moreno N, et al. Low total cholesterol blood level is correlated with pulmonary severity in COVID-19 critical ill patients. Anaesth Crit Care Pain Med. 2020;39:733–5. https://doi.org/10.1016/j.accpm.2020.07.015.
Article
PubMed
PubMed Central
Google Scholar
Hu X, Chen D, Wu L, et al. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin Chim Acta. 2020;510:105–10. https://doi.org/10.1016/j.cca.2020.07.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, Zhang Q, Zhao X, et al. Low high-density lipoprotein level is correlated with the severity of COVID-19 patients: an observational study. Lipids Health Dis. 2020;19:204. https://doi.org/10.1186/s12944-020-01382-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouyang S-M, Zhu H-Q, Xie Y-N, et al. Temporal changes in laboratory markers of survivors and non-survivors of adult inpatients with COVID-19. BMC Infect Dis. 2020;20:952. https://doi.org/10.1186/s12879-020-05678-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turgay Yıldırım Ö, Kaya Ş. The atherogenic index of plasma as a predictor of mortality in patients with COVID-19. Heart Lung. 2021;50:329–33. https://doi.org/10.1016/j.hrtlng.2021.01.016.
Article
PubMed
PubMed Central
Google Scholar
Tanaka S, De Tymowski C, Assadi M, et al. Lipoprotein concentrations over time in the intensive care unit COVID-19 patients: results from the ApoCOVID study. PLoS ONE. 2020;15:e0239573. https://doi.org/10.1371/journal.pone.0239573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Dong C, Li S, et al. Triglyceride to high-density lipoprotein cholesterol ratio is an important determinant of cardiovascular risk and poor prognosis in coronavirus disease-19: a retrospective case series study. DMSO. 2020;13:3925–36. https://doi.org/10.2147/DMSO.S268992.
Article
CAS
Google Scholar
Onohuean H, Al-kuraishy HM, Al-Gareeb AI, et al. Covid-19 and development of heart failure: mystery and truth. Naunyn-Schmiedeberg’s Arch Pharmacol. 2021;394:2013–21. https://doi.org/10.1007/s00210-021-02147-6.
Article
CAS
Google Scholar
Wei C, Wan L, Yan Q, et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab. 2020;2:1391–400. https://doi.org/10.1038/s42255-020-00324-0.
Article
CAS
PubMed
Google Scholar
Begue F, Tanaka S, Mouktadi Z, et al. Altered high-density lipoprotein composition and functions during severe COVID-19. Sci Rep. 2021;11:2291. https://doi.org/10.1038/s41598-021-81638-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho K-H, Kim J-R, Lee I-C, Kwon H-J. Native high-density lipoproteins (HDL) with higher paraoxonase exerts a potent antiviral effect against SARS-CoV-2 (COVID-19), while glycated HDL lost the antiviral activity. Antioxidants. 2021;10:209. https://doi.org/10.3390/antiox10020209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song C-Y, Xu J, He J-Q, Lu Y-Q. Immune dysfunction following COVID-19, especially in severe patients. Sci Rep. 2020;10:15838. https://doi.org/10.1038/s41598-020-72718-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zafer MM, El-Mahallawy HA, Ashour HM. Severe COVID-19 and sepsis: immune pathogenesis and laboratory markers. Microorganisms. 2021;9:159. https://doi.org/10.3390/microorganisms9010159.
Article
CAS
PubMed
PubMed Central
Google Scholar
Souza Junior DR, Silva ARM, Rosa-Fernandes L, et al. HDL proteome remodeling associates with COVID-19 severity. J Clin Lipidol. 2021;15:796–804. https://doi.org/10.1016/j.jacl.2021.10.005.
Article
PubMed
PubMed Central
Google Scholar
Tran-Dinh A, Diallo D, Delbosc S, et al. HDL and endothelial protection: HDL and endothelial protection. Br J Pharmacol. 2013;169:493–511. https://doi.org/10.1111/bph.12174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Lenten BJ, Hama SY, de Beer FC, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest. 1995;96:2758–67. https://doi.org/10.1172/JCI118345.
Article
PubMed
PubMed Central
Google Scholar
Skaggs BJ, Hahn BH, Sahakian L, et al. Dysfunctional, pro-inflammatory HDL directly upregulates monocyte PDGFRβ, chemotaxis and TNFα production. Clin Immunol. 2010;137:147–56. https://doi.org/10.1016/j.clim.2010.06.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velagapudi S, Rohrer L, Poti F, et al. Apolipoprotein M and sphingosine-1-phosphate receptor 1 promote the transendothelial transport of high-density lipoprotein. ATVB. 2021. https://doi.org/10.1161/ATVBAHA.121.316725.
Article
Google Scholar
Sattler K, Levkau B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res. 2008;82:201–11. https://doi.org/10.1093/cvr/cvp070.
Article
CAS
Google Scholar
Meacci E, Garcia-Gil M, Pierucci F. SARS-CoV-2 infection: a role for S1P/S1P receptor signaling in the nervous system? IJMS. 2020;21:6773. https://doi.org/10.3390/ijms21186773.
Article
CAS
PubMed Central
Google Scholar
Liu Q, Zhou Y, Yang Z. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13:3–10. https://doi.org/10.1038/cmi.2015.74.
Article
CAS
PubMed
Google Scholar
Naz F, Arish M. Battling COVID-19 pandemic: sphingosine-1-phosphate analogs as an adjunctive therapy? Front Immunol. 2020;11:1102. https://doi.org/10.3389/fimmu.2020.01102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang R, Wang Q, Yang J. Potential of sphingosine-1-phosphate in preventing SARS-CoV-2 infection by stabilizing and protecting endothelial cells: narrative review. Medicine. 2022;101:e29164. https://doi.org/10.1097/MD.0000000000029164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferretti G, Bacchetti T, Moroni C, et al. Protective effect of human HDL against Cu(2+)-induced oxidation of astrocytes. J Trace Elem Med Biol. 2003;17(Suppl 1):25–30.
CAS
PubMed
Google Scholar
Kluck GEG, Yoo J-A, Sakarya EH, Trigatti BL. Good cholesterol gone bad? HDL and COVID-19. IJMS. 2021;22:10182. https://doi.org/10.3390/ijms221910182.
Article
CAS
PubMed
PubMed Central
Google Scholar
World Health Organization (WHO). Emergencies preparedness, response. Pneumonia of unknown cause. 2020.
Sanyaolu A, Okorie C, Marinkovic A, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med. 2020;2:1069–76. https://doi.org/10.1007/s42399-020-00363-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malhotra S, Rahi M, Das P, et al. Epidemiological profiles and associated risk factors of SARS-CoV-2 positive patients based on a high-throughput testing facility in India. Open Biol. 2021;11:200288. https://doi.org/10.1098/rsob.200288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta R, Rastogi P, Sarna M, et al. Body-mass index, waist-size, waist-hip ratio and cardiovascular risk factors in urban subejcts. J Assoc Phys India. 2007;55:621–7.
CAS
Google Scholar
Chow C, Cardona M, Raju PK, et al. Cardiovascular disease and risk factors among 345 adults in rural India—the Andhra Pradesh Rural Health Initiative. Int J Cardiol. 2007;116:180–5. https://doi.org/10.1016/j.ijcard.2006.03.043.
Article
PubMed
Google Scholar
Prabhakaran D, Shah P, Chaturvedi V, et al. Cardiovascular risk factor prevalence among men in a large industry of northern India. Natl Med J India. 2005;18:59–65.
CAS
PubMed
Google Scholar
Gupta R, Gupta VP, Sarna M, et al. Prevalence of coronary heart disease and risk factors in an urban Indian population: Jaipur Heart Watch-2. Indian Heart J. 2002;54:59–66.
PubMed
Google Scholar
Kaur P, Rao TV, Sankarasubbaiyan S, et al. Prevalence and distribution of cardiovascular risk factors in an urban industrial population in south India: a cross-sectional study. J Assoc Phys India. 2007;55:771–6.
CAS
Google Scholar
Mehan MB, Srivastava N, Pandya H. Profile of non communicable disease risk factors in an industrial setting. J Postgrad Med. 2006;52:167–71 (discussion 171–173).
PubMed
Google Scholar
Choa R, Sharp R, Mahtani KR. Hallux valgus. BMJ. 2010;341:c5130. https://doi.org/10.1136/bmj.c5130.
Article
PubMed
Google Scholar
Pandey RM, Gupta R, Misra A, et al. Determinants of urban-rural differences in cardiovascular risk factors in middle-aged women in India: a cross-sectional study. Int J Cardiol. 2013;163:157–62. https://doi.org/10.1016/j.ijcard.2011.06.008.
Article
PubMed
Google Scholar
Guptha S, Gupta R, Deedwania P, et al. Cholesterol lipoproteins and prevalence of dyslipidemias in urban Asian Indians: a cross sectional study. Indian Heart J. 2014;66:280–8. https://doi.org/10.1016/j.ihj.2014.03.005.
Article
PubMed
PubMed Central
Google Scholar
Joshi SR, Anjana RM, Deepa M, et al. Prevalence of dyslipidemia in urban and rural India: the ICMR-INDIAB study. PLoS ONE. 2014;9:e96808. https://doi.org/10.1371/journal.pone.0096808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta R, Rao RS, Misra A, Sharma SK. Recent trends in epidemiology of dyslipidemias in India. Indian Heart J. 2017;69:382–92. https://doi.org/10.1016/j.ihj.2017.02.020.
Article
PubMed
PubMed Central
Google Scholar
Puri R, Mehta V, Iyengar SS, et al. Lipid Association of India expert consensus statement on management of dyslipidemia in Indians 2020: part III. J Assoc Phys India. 2020;68:8–9.
Google Scholar
Permana H, Huang I, Purwiga A, et al. In-hospital use of statins is associated with a reduced risk of mortality in coronavirus-2019 (COVID-19): systematic review and meta-analysis. Pharmacol Rep. 2021;73:769–80. https://doi.org/10.1007/s43440-021-00233-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordon D. Statins may be a key therapeutic for Covid-19. Med Hypotheses. 2020;144:110001. https://doi.org/10.1016/j.mehy.2020.110001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-kuraishy H, Al-Gareeb A, Al-Buhadilly A. Rosuvastatin improves vaspin serum levels in obese patients with acute coronary syndrome. Diseases. 2018;6:9. https://doi.org/10.3390/diseases6010009.
Article
CAS
PubMed Central
Google Scholar
Kadhim S, Al-Windy S, Al-Nami M, et al. Statins improve periodontal disease—induced inflammatory changes and associated lipid peroxidation in patients with dyslipidemia: two birds by one stone. J Int Oral Health. 2020;12:66. https://doi.org/10.4103/jioh.jioh_194_19.
Article
Google Scholar
Rasheed H, Hussien N, Al-Naimi M, et al. Fenofibrate and Crataegus oxyacantha is an effectual combo for mixed dyslipidemia. Biomed Biotechnol Res J. 2020;4:259. https://doi.org/10.4103/bbrj.bbrj_26_20.
Article
Google Scholar
Pirillo A, Catapano AL, Norata GD. HDL in infectious diseases and sepsis. In: von Eckardstein A, Kardassis D, editors. High density lipoproteins. Cham: Springer; 2015. p. 483–508.
Chapter
Google Scholar
Sawant AM, Shetty D, Mankeshwar R, Ashavaid TF. Prevalence of dyslipidemia in young adult Indian population. J Assoc Phys India. 2008;56:99–102.
CAS
Google Scholar
Ajay Raj S, Sivakumar K, Sujatha K. Prevalence of dyslipidemia in South Indian adults: an urban-rural comparison. Int J Community Med Public Health. 2016. https://doi.org/10.18203/2394-6040.ijcmph20162571.
Article
Google Scholar
Gupta P, Chaurasia AK, Mishra A, Prakash G. Study of prevalence of dyslipidemia in newly diagnosed essential hypertension. IJCMSR. 2018. https://doi.org/10.21276/ijcmsr.2018.3.4.22.
Article
Google Scholar
Fatmi Z, Kondal D, Shivashankar R, et al. Prevalence of dyslipidaemia and factors associated with dyslipidaemia among South Asian adults: The Center for Cardiometabolic Risk Reduction in South Asia Cohort Study. Natl Med J India. 2020;33:137–45. https://doi.org/10.4103/0970-258X.314005.
Article
PubMed
Google Scholar