Zipfel C, Oldroyd GE. Plant signalling in symbiosis and immunity. Nature. 2017;543:328–36.
Article
CAS
PubMed
Google Scholar
Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. New Phytol. 2013;197:394–404.
Article
CAS
PubMed
Google Scholar
Boutrot F, Zipfel C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol. 2017;55:257–86.
Article
CAS
PubMed
Google Scholar
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature. 2004;428:764–7.
Article
CAS
PubMed
Google Scholar
Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, et al. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 2004;135:1113–28.
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444:323–9.
Article
CAS
PubMed
Google Scholar
Spoel SH, Dong X. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol. 2012;12:89–100.
Article
CAS
PubMed
Google Scholar
Li B, Ferreira MA, Huang M, Camargos LF, Yu X, Teixeira RM, et al. The receptor-like kinase NIK1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity. Nat Commun. 2019;10:4996.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kørner CJ, Klauser D, Niehl A, Domínguez-Ferreras A, Chinchilla D, Boller T, et al. The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol Plant-Microbe Interactions. 2013;26:1271–80.
Article
CAS
Google Scholar
Kong L, Wu J, Lu L, Xu Y, Zhou X. Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant. 2014;7:691–708.
Article
CAS
PubMed
Google Scholar
Zvereva AS, Golyaev V, Turco S, Gubaeva EG, Rajeswaran R, Schepetilnikov MV, et al. Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. New Phytol. 2016;211:1020–34.
Article
CAS
PubMed
Google Scholar
Nicaise V, Candresse T. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity: a plant virus effector impairs PTI early responses. Mol Plant Pathol. 2017;18:878–86.
Article
CAS
PubMed
Google Scholar
Saijo Y, Loo EP, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 2018;93:592–613.
Article
CAS
PubMed
Google Scholar
Movahed N, Cabanillas DG, Wan J, Vali H, Laliberté J-F, Zheng H. Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves. Plant Physiol. 2019;180:1375–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niehl A, Wyrsch I, Boller T, Heinlein M. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol. 2016;211:1008–19.
Article
CAS
PubMed
Google Scholar
Lee B, Park Y, Lee S, Song GC, Ryu C. Bacterial RNAs activate innate immunity in Arabidopsis. New Phytol. 2016;209:785–97.
Article
CAS
PubMed
Google Scholar
Zorzatto C, Machado JPB, Lopes KVG, Nascimento KJT, Pereira WA, Brustolini OJB, et al. NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature. 2015;520:679–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amari K, Niehl A. Nucleic acid-mediated PAMP-triggered immunity in plants. Curr Opin Virol. 2020;42:32–9.
Article
CAS
PubMed
Google Scholar
Cao M, Du P, Wang X, Yu YQ, Qiu YH, Li W, et al. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc Natl Acad Sci USA. 2014;111:14613–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leonetti P, Ghasemzadeh A, Consiglio A, Gursinsky T, Behrens S, Pantaleo V. Endogenous activated small interfering RNAs in virus-infected Brassicaceae crops show a common host gene-silencing pattern affecting photosynthesis and stress response. New Phytol. 2021;229:1650–64.
Article
CAS
PubMed
Google Scholar
Cui H, Tsuda K, Parker JE. Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol. 2015;66:487–511.
Article
CAS
PubMed
Google Scholar
Bi G, Zhou J-M. Regulation of cell death and signaling by pore-forming resistosomes. Annu Rev Phytopathol. 2021;59:239–63.
Article
CAS
PubMed
Google Scholar
Nakahara KS, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant immunity. Curr Opin Plant Biol. 2014;20:88–95.
Article
CAS
PubMed
Google Scholar
Mandadi KK, Scholthof KB. Plant immune responses against viruses: how does a virus cause disease? Plant Cell. 2013;25:1489–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Ronde D, Butterbach P, Kormelink R. Dominant resistance against plant viruses. Front Plant Sci. 2014;5:307.
Article
PubMed
PubMed Central
Google Scholar
Lapin D, Bhandari DD, Parker JE. Origins and immunity networking functions of EDS1 family proteins. Annu Rev Phytopathol. 2020;58:253–76.
Article
CAS
PubMed
Google Scholar
Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science. 2019;364:eaav5870.
Bi G, Su M, Li N, Liang Y, Dang S, Xu J, et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell. 2021;184:3528–41.
Article
CAS
PubMed
Google Scholar
Martin R, Qi T, Zhang H, Liu F, King M, Toth C, et al. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science. 2020;370:eabd9993.
Ma S, Lapin D, Liu L, Sun Y, Song W, Zhang X, et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science. 2020;370:eabe3069.
Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL. Help wanted: helper NLRs and plant immune responses. Curr Opin Plant Biol. 2019;50:82–94.
Article
CAS
PubMed
Google Scholar
Lapin D, Kovacova V, Sun X, Dongus JA, Bhandari D, von Born P, et al. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors. Plant Cell. 2019;31:2430–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner S, Stuttmann J, Rietz S, Guerois R, Brunstein E, Bautor J, et al. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe. 2013;14:619–30.
Article
CAS
PubMed
Google Scholar
Gantner J, Ordon J, Kretschmer C, Guerois R, Stuttmann J. An EDS1-SAG101 complex is essential for TNL-mediated immunity in nicotiana benthamiana. Plant Cell. 2019;31:2456–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, et al. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science. 2001;291:118–20.
Article
CAS
PubMed
Google Scholar
Collier SM, Hamel L-P, Moffett P. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol Plant-Microbe Interactions. 2011;24:918–31.
Article
CAS
Google Scholar
Jacob F, Vernaldi S, Maekawa T. Evolution and conservation of plant NLR functions. Front Immunol. 2013;4:297.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prigozhin DM, Krasileva KV. Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites. Plant Cell. 2021;33:998–1015.
Article
PubMed
PubMed Central
Google Scholar
Kourelis J, van der Hoorn RAL. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. 2018;30:285–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cesari S. Multiple strategies for pathogen perception by plant immune receptors. New Phytol. 2018;219:17–24.
Article
CAS
PubMed
Google Scholar
Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol. 2007;5:e68.
Carr JP, Lewsey MG, Palukaitis P. Signaling in induced resistance. Adv Virus Res. 2010;76:57–121.
Article
CAS
PubMed
Google Scholar
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006;312:436–9.
Article
CAS
PubMed
Google Scholar
Sun Z, He Y, Li J, Wang X, Chen J. Genome-wide characterization of rice black streaked dwarf virus-responsive MicroRNAs in rice leaves and roots by small RNA and degradome sequencing. Plant Cell Physiol. 2015;56:688–99.
Article
CAS
PubMed
Google Scholar
Jin L, Qin Q, Wang Y, Pu Y, Liu L, Wen X, et al. Rice dwarf virus P2 protein hijacks Auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathog. 2016;12:e1005847.
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2:E104.
Article
PubMed
PubMed Central
Google Scholar
Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science. 2006;313:68–71.
Article
CAS
PubMed
Google Scholar
Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, et al. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev. 2010;24:904–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertermann R, Tamilarasan S, Gursinsky T, Gambino G, Schuck J, Weinholdt C, et al. A viral suppressor modulates the plant immune response early in infection by regulating MicroRNA activity. mBio. 2018;9:e00419–18.
Gasciolli V, Mallory AC, Bartel DP, Vaucheret H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol. 2005;15:1494–500.
Article
CAS
PubMed
Google Scholar
Bouche N, Lauressergues D, Gasciolli V, Vaucheret H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 2006;25:3347–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mlotshwa S, Pruss GJ, Peragine A, Endres MW, Li J, Chen X, et al. DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS One. 2008;3:e1755.
Taochy C, Gursanscky NR, Cao J, Fletcher SJ, Dressel U, Mitter N, et al. A genetic screen for impaired systemic RNAi highlights the crucial role of DICER-LIKE 2. Plant Physiol. 2017;175:1424–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y-Y, Hou B-H, Lee W-C, Lu S-H, Yang C-J, Vaucheret H, et al. DCL2- and RDR6-dependent transitive silencing of SMXL4 and SMXL5 in Arabidopsis dcl4 mutants causes defective phloem transport and carbohydrate over-accumulation. Plant J. 2017;90:1064–78.
Article
CAS
PubMed
Google Scholar
Wang Z, Hardcastle TJ, Canto Pastor A, Yip WH, Tang S, Baulcombe DC. A novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA viruses. Genes Dev. 2018;32:1155–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manavella PA, Koenig D, Weigel D. Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci USA. 2012;109:2461–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol. 2010;17:997–1003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ordon J, Martin P, Erickson JL, Ferik F, Balcke G, Bonas U, et al. Disentangling cause and consequence: genetic dissection of the DANGEROUS MIX2 risk locus, and activation of the DM2h NLR in autoimmunity. Plant J. 2021;106:1008–23.
Article
CAS
PubMed
Google Scholar
Chae E, Bomblies K, Kim ST, Karelina D, Zaidem M, Ossowski S, et al. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell. 2014;159:1341–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karasov TL, Chae E, Herman JJ, Bergelson J. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell. 2017;29:666–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delaux P-M, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science. 2021;371:eaba6605.
Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, et al. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci. 2012;109:1790–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, et al. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 2011;25:2540–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fei Q, Li P, Teng C, Meyers BC. Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances. Plant J. 2015;83:451–65.
Article
CAS
PubMed
Google Scholar
Chiumenti M, Catacchio CR, Miozzi L, Pirovano W, Ventura M, Pantaleo V. A short indel-lacking-resistance gene triggers silencing of the photosynthetic machinery components through TYLCSV-associated endogenous siRNAs in tomato. Front Plant Sci. 2018;9:1470.
Article
PubMed
PubMed Central
Google Scholar
Sós-Hegedűs A, Domonkos Á, Tóth T, Gyula P, Kaló P, Szittya G. Suppression of NB-LRR genes by miRNAs promotes nitrogen-fixing nodule development in Medicago truncatula. Plant Cell Environ. 2020;43:1117–29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell. 2012;24:859–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vazquez F, Hohn T. Biogenesis and biological activity of secondary siRNAs in plants. Scientif. (Cairo). 2013;2013:783253.
Canto-Pastor A, Santos BAMC, Valli AA, Summers W, Schornack S, Baulcombe DC. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci. 2019;116:2755–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
He XF, Fang YY, Feng L, Guo HS. Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett. 2008;582:2445–52.
Article
CAS
PubMed
Google Scholar
Cui C, Wang JJ, Zhao JH, Fang YY, He XF, Guo HS, et al. A Brassica miRNA regulates plant growth and immunity through distinct modes of action. Mol Plant. 2020;13:231–45.
Article
CAS
PubMed
Google Scholar
Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, et al. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe. 2009;6:34–44.
Article
CAS
PubMed
Google Scholar
Liebrand TWH, van den Burg HA, Joosten MHAJ. Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends Plant Sci. 2014;19:123–32.
Article
CAS
PubMed
Google Scholar
Guzmán-Benito I, Donaire L, Amorim-Silva V, Vallarino JG, Esteban A, Wierzbicki AT, et al. The immune repressor BIR1 contributes to antiviral defense and undergoes transcriptional and post-transcriptional regulation during viral infections. New Phytol. 2019;224:421–38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leonetti P, Pantaleo V. Plant virus–derived siRNAs ‘turn on’ broad-spectrum plant immunity in wheat. Mol Plant. 2021;14:1038–40.
Article
CAS
PubMed
Google Scholar
Murota K, Shimura H, Takeshita M, Masuta C. Interaction between Cucumber mosaic virus 2b protein and plant catalase induces a specific necrosis in association with proteasome activity. Plant Cell Rep. 2017;36:37–47.
Article
CAS
PubMed
Google Scholar
Hyodo K, Hashimoto K, Kuchitsu K, Suzuki N, Okuno T. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus. Proc Natl Acad Sci USA. 2017;114:E1282–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, et al. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants. 2017;3:16203.
Article
CAS
PubMed
Google Scholar
Liu P, Zhang X, Zhang F, Xu M, Ye Z, Wang K, et al. A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Mol Plant. 2021;14:1088–103.
Article
CAS
PubMed
Google Scholar
Poirier EZ, Buck MD, Chakravarty P, Carvalho J, Frederico B, Cardoso A, et al. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science. 2021;373:231–6.
Article
CAS
PubMed
PubMed Central
Google Scholar