Koh WM, Bogich T, Siegel K, Jin J, Chong EY, Tan CY, Chen MI, Horby P, Cook AR: The epidemiology of hand, foot and mouth disease in Asia: a systematic review and analysis. Pediatr Infect Dis J. 2016, 35.
Fang C-Y, Liu C-C. Recent development of enterovirus A vaccine candidates for the prevention of hand, foot, and mouth disease. Expert Rev Vaccines. 2018;17:819–31.
Article
CAS
PubMed
Google Scholar
de Graaf H, Pelosi E, Cooper A, Pappachan J, Sykes K, MacIntosh I, Gbesemete D, Clark TW, Patel SV, Faust SN. Severe enterovirus infections in hospitalized children in the South of England: clinical phenotypes and causative genotypes. Pediatr Infect Dis J. 2016;35:723.
Article
PubMed
PubMed Central
Google Scholar
Owatanapanich S, Wutthanarungsan R, Jaksupa W, Thisyakorn U. Risk factors for severe enteroviral infections in children. J Med Assoc Thai. 2016;99:322–30.
PubMed
Google Scholar
Zhao Y, Zhang H, Liu H, Zhang J, He L, Sun H, Huang X, Yang Z, Ma S: Molecular characteristics of hand, foot, and mouth disease for hospitalized pediatric patients in Yunnan, China. Medicine 2018, 97.
Chen B-S, Lee H-C, Lee K-M, Gong Y-N, Shih S-R. Enterovirus and Encephalitis. Front Microbiol. 2020;11:261–261.
Article
PubMed
PubMed Central
Google Scholar
Majer A, McGreevy A, Booth TF. Molecular pathogenicity of enteroviruses causing neurological disease. Front Microbiol. 2020;11:540–540.
Article
PubMed
PubMed Central
Google Scholar
Muehlenbachs A, Bhatnagar J, Zaki SR. Tissue tropism, pathology and pathogenesis of enterovirus infection. J Pathol. 2015;235:217–28.
Article
PubMed
Google Scholar
Phyu WK, Ong KC, Wong KT. Modelling person-to-person transmission in an Enterovirus A71 orally infected hamster model of hand-foot-and-mouth disease and encephalomyelitis. Emerg Microbes Infect. 2017;6:1–9.
Article
CAS
Google Scholar
Sun L, Lin H, Lin J, He J, Deng A, Kang M, Zeng H, Ma W, Zhang Y. Evaluating the transmission routes of hand, foot, and mouth disease in Guangdong China. Am J Infect Control. 2016;44:e13–4.
Article
PubMed
Google Scholar
Zaoutis T, Klein JD. Enterovirus infections. Pediatrics Rev. 1998;19:183–91.
Article
CAS
Google Scholar
Liu Q, Shi J, Huang X, Liu F, Cai Y, Lan K, Huang Z. A murine model of coxsackievirus A16 infection for anti-viral evaluation. Antiviral Res. 2014;105:26–31.
Article
CAS
PubMed
Google Scholar
Caine EA, Fuchs J, Das SC, Partidos CD, Osorio JE. Efficacy of a trivalent hand, foot, and mouth disease vaccine against enterovirus 71 and coxsackieviruses A16 and A6 in mice. Viruses. 2015;7:5919–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao P, Miao Z, Xu F, Lu H, Sun Y, Xia Y, Chen C, Yang Z, Xia S, Jiang J. An adult gerbil model for evaluating potential coxsackievirus A16 vaccine candidates. Vaccine. 2019;37:5341–9.
Article
CAS
PubMed
Google Scholar
Mao Q, Wang Y, Gao R, Shao J, Yao X, Lang S, Wang C, Mao P, Liang Z, Wang J. A neonatal mouse model of coxsackievirus A16 for vaccine evaluation. J Virol. 2012;86:11967–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Li Y, Xia Y, Xu F, Wang W, Yang Z, Lu H, Chen Z, Miao Z, Liang W. Coxsackievirus A16 induced neurological disorders in young gerbils which could serve as a new animal model for vaccine evaluation. Sci Rep. 2016;6:34299–34299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. A novel orally infected hamster model for Coxsackievirus A16 hand-foot-and-mouth disease and encephalomyelitis. Lab Invest. 2020;100:1262–75.
Article
CAS
PubMed
Google Scholar
Jian-Ping L, Yun L. Experimental infection of tree shrews (Tupaia belangeri) with Coxsackie virus A16. Zool Res. 2014;35:485.
Google Scholar
Wang J, Zhang Y, Zhang X, Hu Y, Dong C, Liu L, Yang E, Che Y, Pu J, Wang X. Pathologic and immunologic characteristics of coxsackievirus A16 infection in rhesus macaques. Virology. 2017;500:198–208.
Article
CAS
PubMed
Google Scholar
Kobayashi K, Koike S. Cellular receptors for enterovirus A71. J Biomed Sci. 2020;27:23–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamayoshi S, Iizuka S, Yamashita T, Minagawa H, Mizuta K, Okamoto M, Nishimura H, Sanjoh K, Katsushima N, Itagaki T. Human SCARB2-Dependent Infection by Coxsackievirus A7, A14, and A16 and Enterovirus 71. J Virol. 2012;86:5686–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15:798–801.
Article
CAS
PubMed
Google Scholar
Li X, Fan P, Jin J, Su W, An D, Xu L, Sun S, Zhang Y, Meng X, Gao F, et al. Establishment of cell lines with increased susceptibility to EV71/CA16 by stable overexpression of SCARB2. Virol J. 2013;10:250.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamayoshi S, Ohka S, Fujii K, Koike S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol. 2013;87:3335–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamayoshi S, Koike S. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J Virol. 2011;85:4937–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuronita T, Eskelinen EL, Fujita H, Saftig P, Himeno M, Tanaka Y. A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. J Cell Sci. 2002;115:4117–31.
Article
CAS
PubMed
Google Scholar
Eskelinen EL, Tanaka Y, Saftig P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 2003;13:137–45.
Article
CAS
PubMed
Google Scholar
Gamp AC, Tanaka Y, Lüllmann-Rauch R, Wittke D, D’Hooge R, De Deyn PP, Moser T, Maier H, Hartmann D, Reiss K, et al. LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum Mol Genet. 2003;12:631–46.
Article
CAS
PubMed
Google Scholar
Lin Y-W, Yu S-L, Shao H-Y, Lin H-Y, Liu C-C, Hsiao K-N, Chitra E, Tsou Y-L, Chang H-W, Sia C, et al. Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS ONE. 2013;8:e57591.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujii K, Nagata N, Sato Y, Ong KC, Wong KT, Yamayoshi S, Shimanuki M, Shitara H, Taya C, Koike S. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc Natl Acad Sci USA. 2013;110:14753–8.
Article
CAS
PubMed
Google Scholar
Liou AT, Wu SY, Liao CC, Chang YS, Chang CS, Shih C. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep. 2016;6:31151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou S, Liu Q, Wu X, Chen P, Wu X, Guo Y, Liu S, Liang Z, Fan C, Wang Y. A safe and sensitive enterovirus A71 infection model based on human SCARB2 knock-in mice. Vaccine. 2016;34:2729–36.
Article
CAS
PubMed
Google Scholar
Zhu Q, Kanneganti T-D. Cutting edge: distinct regulatory mechanisms control proinflammatory cytokines IL-18 and IL-1β. J Immunol. 2017;198:4210–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang C, Liao C, Liou A, Chang Y, Chang Y, Tzeng B, Chen C, Shih C. Enterovirus 71 targets the cardiopulmonary system in a robust oral infection mouse model. Sci Rep. 2019;9:11108.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3:71–85.
PubMed
PubMed Central
Google Scholar
Mao Q, Wang Y, Yao X, Bian L, Wu X, Xu M, Liang Z. Coxsackievirus A16: epidemiology, diagnosis, and vaccine. Hum Vaccin Immunother. 2014;10:360–7.
Article
PubMed
Google Scholar
Yin D-q, Wang C-b, Wang C-b. Epidemiology characteristics of human coxsackievirus a16 and enterovirus 71 circulating in Linyi, China, from 2009 to 2017. Jpn J Infect Dis. 2018;71:470–3.
Article
PubMed
Google Scholar
Zhang W, Huang Z, Huang M, Zeng J. Predicting Severe Enterovirus 71-Infected Hand, Foot, and Mouth Disease: Cytokines and Chemokines. Mediators Inflamm. 2020;2020:9273241.
PubMed
PubMed Central
Google Scholar
Xu Y, Li S, Cai C, Liu J, Wang Y, Jiang Y, Du L, Chen Z. Characterization of inflammatory cytokine profiles in cerebrospinal fluid of hand, foot, and mouth disease children with enterovirus 71-related encephalitis in Hangzhou, Zhejiang, China. Medicine (Baltimore). 2019;98:e18464.
Article
CAS
Google Scholar
Ye N, Gong X. Cytokine responses and correlations thereof with clinical profiles in children with enterovirus 71 infections. BMC Infect Dis. 2015;15:225–225.
Article
PubMed
PubMed Central
CAS
Google Scholar
Food DA. H: New drug and biological drug products; evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible final rule. Fed Reg. 2002;67:37988.
Google Scholar
Park GD, Mitchel JT. Working with the US Food and Drug Administration to obtain approval of products under the animal rule. Ann N Y Acad Sci. 2016;1374:10–6.
Article
PubMed
Google Scholar
Safronetz D, Geisbert TW, Feldmann H. Animal models for highly pathogenic emerging viruses. Curr Opin Virol. 2013;3:205–9.
Article
PubMed
PubMed Central
Google Scholar
Li C, Zhang B, Feng Y, Xu C, Jiang J, Lu Y. Establishment and characterization of an oral gerbil model for a non-mouse-adapted enterovirus 71 strain. Virus Res. 2018;255:117–26.
Article
CAS
PubMed
Google Scholar
Khong WX, Yan B, Yeo H, Tan EL, Lee JJ, Ng JK, Chow VT, Alonso S. A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol. 2012;86:2121–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu D, Zhao XY, Yao Y, Dai FF, He H, Li RQ, Jin RH, Liang LC, Li N. A new factor influencing pathogen detection by molecular assay in children with both mild and severe hand, foot, and mouth disease. Diagn Microbiol Infect Dis. 2013;76:162–7.
Article
PubMed
PubMed Central
Google Scholar
Liao CC, Liou AT, Chang YS, Wu SY, Chang CS, Lee CK, Kung JT, Tu PH, Yu YY, Lin CY, et al. Immunodeficient mouse models with different disease profiles by in vivo infection with the same clinical isolate of enterovirus 71. J Virol. 2014;88:12485–99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuss SK, Etheredge CA, Pfeiffer JK. Multiple host barriers restrict poliovirus trafficking in mice. PLoS Pathog. 2008;4:e1000082.
Article
PubMed
PubMed Central
CAS
Google Scholar