Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J. 1994;5(3):421–7.
Article
CAS
Google Scholar
Akano A, Dixon A, Mba C, Barrera E, Fregene M. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. TheorAppl Genet. 2002;105(4):521–5. https://doi.org/10.1007/s00122-002-0891-7.
Article
CAS
Google Scholar
Alabi OJ, Kumar LP, Naidu RA. Cassava Mosaic Disease: A curse to food security in Sub-Saharan Afrca. APSnetFeatur. 2011;
Alcaide-Loridan C, Jupin I. Ubiquitin and plant viruses, let’s play together! Plant Physiol. 2012;160(1):72–82. https://doi.org/10.1104/pp.112.201905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allie F, Pierce EJ, Okoniewski MJ, Rey C. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genom. 2014;15(1):1006. https://doi.org/10.1186/1471-2164-15-1006.
Article
CAS
Google Scholar
Amuge T, Berger DK, Katari MS, Myburg AA, Goldman SL, Ferguson ME. A time series transcriptome analysis of cassava (ManihotesculentaCrantz) varieties challenged with Ugandan cassava brown streak virus. Sci Rep. 2017;7(1):9747.
Article
CAS
Google Scholar
Anjanappa RB, Mehta D, Maruthi MN, Kanju E, Gruissem W, Vanderschuren H. Characterization of brown streak virus-resistant cassava. Mol Plant-Microbe Interact. 2016;29(7):527–34. https://doi.org/10.1094/MPMI-01-16-0027-R.
Article
CAS
PubMed
Google Scholar
Anthony P, Davey MR, Power JB, Lowe KC. An improved protocol for the culture of cassava leaf protoplasts. Plant Cell Tissue Organ Cult. 1995;42(3):299–302. https://doi.org/10.1007/BF00030004.
Article
CAS
Google Scholar
Ascencio-Ibáñez JT, Sozzani R, Lee T-J, Chu T-M, Wolfinger RD, Cella R, et al. Global analysis of arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148(1):436–54. https://doi.org/10.1104/pp.108.121038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berman HM. The protein data bank. Nucleic Acids Res. 2000;28(1):235–42. https://doi.org/10.1093/nar/28.1.235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berrie LC, Palmer KE, Rybicki EP, Rey MEC. Molecular characterisation of a distinct South African cassava infecting geminivirus. Arch Virol. 1998;143(11):2253–60. https://doi.org/10.1007/s007050050457.
Article
CAS
PubMed
Google Scholar
Berrie LC, Rybicki EP, Rey MEC. Complete nucleotide sequence and host range of South African cassava mosaic virus: further evidence for recombination amongst begomoviruses. J Gen Virol. 2001;82(1):53–8. https://doi.org/10.1099/0022-1317-82-1-53.
Article
CAS
PubMed
Google Scholar
Berry S, Rey MEC. Molecular evidence for diverse populations of cassava-infecting begomoviruses in Southern Africa. Arch Virol. 2001;146(9):1795–802. https://doi.org/10.1007/s007050170065.
Article
CAS
PubMed
Google Scholar
Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol. 2016;34(5):562–70. https://doi.org/10.1038/nbt.3535.
Article
CAS
PubMed
Google Scholar
Briddon RW, Robertson I, Markham PG, Stanley J. Occurrence of South African cassava mosaic virus (SACMV) in Zimbabwe. Plant Pathol. 2004;53(2):233–233. https://doi.org/10.1111/j.0032-0862.2004.00963.x.
Article
Google Scholar
Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42(22):e168–e168.
Article
Google Scholar
Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH. Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. TheorAppl Genet. 2015;128(9):1647–67. https://doi.org/10.1007/s00122-015-2555-4.
Article
Google Scholar
Chen S, Tao L, Zeng L, Vega-Sanchez M, Umemura K, Wang G-L. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol. 2006;7(5):417–27. https://doi.org/10.1111/j.1364-3703.2006.00346.x.
Article
CAS
PubMed
Google Scholar
Chen X, He Z, Fu M, Wang Y, Wu H, Li X, et al. The E3 Ubiquitin Ligase Siah-1 Suppresses Avian Reovirus Infection by Targeting p10 for Degradation López S, editor. J Virol. 2018;92(6)
Cheng C-W, Hsiao Y-Y, Wu H-C, Chuang C-M, Chen J-S, Tsai C-H, et al. Suppression of bamboo mosaic virus accumulation by a putative methyltransferase in nicotianabenthamiana. J Virol. 2009;83(11):5796–805.
Article
CAS
Google Scholar
Chikoti PC, Mulenga RM, Tembo M, Sseruwagi P. Cassava mosaic disease: a review of a threat to cassava production in Zambia. J Plant Pathol. 2019;101(3):467–77. https://doi.org/10.1007/s42161-019-00255-0.
Article
PubMed
PubMed Central
Google Scholar
Cougot D, Neuveut C, Buendia MA. HBV induced carcinogenesis. J ClinVirol. 2005;34:S75–8.
CAS
Google Scholar
Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, et al. Discovering host genes involved in the infection by the tomato yellow leaf curl virus complex and in the establishment of resistance to the virus using tobacco rattle virus-based post transcriptional gene silencing. Viruses. 2013;5(3):998–1022.
Article
CAS
Google Scholar
De Bruyn A, Harimalala M, Zinga I, Mabvakure BM, Hoareau M, Ravigné V, et al. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol Biol. 2016;16(1):182. https://doi.org/10.1186/s12862-016-0749-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dueber EC, Schoeffler AJ, Lingel A, Elliott JM, Fedorova AV, Giannetti AM, et al. Antagonists induce a conformational change in CIAP1 that promotes autoubiquitination. Science. 2011;334(6054):376–80. https://doi.org/10.1126/science.1207862.
Article
CAS
PubMed
Google Scholar
Duxbury EM, Day JP, Maria Vespasiani D, Thüringer Y, Tolosana I, Smith SC, et al. Host-pathogen coevolution increases genetic variation in susceptibility to infection. Lemaître B, Tautz D, Lemaître B, editors. Elife. 2019;8:e46440. Doi: https://doi.org/10.7554/eLife.46440
Faraco M, DiSansebastiano GP, Spelt K, Koes RE, Quattrocchio FM. One protoplast is not the other! Plant Physiol. 2011;156(2):474–8. https://doi.org/10.1104/pp.111.173708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fondong VN, Rey C. Recent Biotechnological Advances in the Improvement of Cassava. In: Waisundara V, editor. Cassava. InTech; 2018. p. 139–61.
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148. https://doi.org/10.1186/s13059-016-1012-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahn SK, Terry ER, Leuschner K. Breeding cassava for resistance to cassava mosaic disease. Euphytica. 1980;29(3):673–83. https://doi.org/10.1007/BF00023215.
Article
Google Scholar
Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11(11):777–88.
Article
CAS
Google Scholar
Haynes JL. Principles of flow cytometry. Cytometry. 1988;9(S3):7–17. https://doi.org/10.1002/cyto.990090804.
Article
Google Scholar
Huang C-N, Cornejo MJ, Bush DS, Jones RL. Estimating viability of plant protoplasts using double and single staining. Protoplasma. 1986;135(2–3):80–7. https://doi.org/10.1007/BF01277001.
Article
Google Scholar
Ishii S. Factors influencing protoplast viability of suspension-cultured rice cells during isolation process. Plant Physiol. 1988;88(1):26–9. https://doi.org/10.1104/pp.88.1.26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, et al. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res. 2017;232:22–33.
Article
CAS
Google Scholar
Jennings DL. Breeding for resistance to African cassava mosaic geminivirus in East Africa. Trop Sci. 1994;34(1):110–22.
Google Scholar
Kalyebi A, Macfadyen S, Parry H, Tay WT, De Barro P, Colvin J. African cassava whitefly, Bemisiatabaci, cassava colonization preferences and control implications. PLoS One. 2018;13(10):e0204862. https://doi.org/10.1371/journal.pone.0204862.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim MJ, Baek K, Park C-M. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep. 2009;28(8):1159–67. https://doi.org/10.1007/s00299-009-0717-z.
Article
CAS
PubMed
Google Scholar
Kumar RV. Plant antiviral immunity against geminiviruses and viral counter-defense for survival. Front Microbiol. 2019;10:1460.
Article
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. MolBiolEvol. 2018;35(6):1547–9.
CAS
Google Scholar
Kuon J-E, Qi W, Schläpfer P, Hirsch-Hoffmann M, von Bieberstein PR, Patrignani A, et al. Haplotype-resolved genomes of geminivirus-resistant and geminivirus-susceptible African cassava cultivars. BMC Biol. 2019;17(1):75. https://doi.org/10.1186/s12915-019-0697-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kushwaha NK, Bhardwaj M, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLOS Pathog. 2017;13(8):e1006587. https://doi.org/10.1371/journal.ppat.1006587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, et al. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J. 2009;57(5):905–17. https://doi.org/10.1111/j.1365-313X.2008.03737.x.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W, and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
Google Scholar
Lefeuvre P, Martin DP, Hoareau M, Naze F, Delatte H, Thierry M, et al. Begomovirus “melting pot” in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. J Gen Virol. 2007;88(12):3458–68. https://doi.org/10.1099/vir.0.83252-0.
Article
CAS
PubMed
Google Scholar
Legg JP, Thresh JM. Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Vol. 71, Virus research. Netherlands; 2000. p. 135–49.
Legg JP, Owor B, Sseruwagi P, Ndunguru J. Cassava Mosaic Virus Disease in East and Central Africa: Epidemiology and Management of A Regional Pandemic. In: Plant Virus Epidemiology. Academic Press; 2006. p. 355–418.
Legg JP, Lava Kumar P, Makeshkumar T, Tripathi L, Ferguson M, Kanju E, et al. Cassava Virus Diseases. In: Advances in virus research. United States; 2015. p. 85–142.
Lentz E, Eisner S, McCallum E, Schlegel K, Campos F, Gruissem W, et al. Genetic transformation of recalcitrant cassava by embryo selection and increased hormone levels. Methods Protoc. 2018;1(4):42.
Article
CAS
Google Scholar
Liao W, Li Y, Yang Y, Wang G, Peng M. Exposure to various abscission-promoting treatments suggests substantial ERF subfamily transcription factors involvement in the regulation of cassava leaf abscission. BMC Genom. 2016;17(1):538. https://doi.org/10.1186/s12864-016-2845-5.
Article
CAS
Google Scholar
Libault M, Wan J, Czechowski T, Udvardi M, Stacey G. Identification of 118 arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant-Microbe Interact. 2007;20(8):900–11. https://doi.org/10.1094/MPMI-20-8-0900.
Article
CAS
PubMed
Google Scholar
Lin C-S, Hsu C-T, Yang L-H, Lee L-Y, Fu J-Y, Cheng Q-W, et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J. 2018;16(7):1295–310. https://doi.org/10.1111/pbi.12870.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Chung HY, Lacatus G, Baliji S, Ruan J, Sunter G. Altered expression of Arabidopsis genes in response to a multifunctional geminivirus pathogenicity protein. BMC Plant Biol. 2014;14(1):302. https://doi.org/10.1186/s12870-014-0302-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
Google Scholar
Locatelli F, Vannini C, Magnani E, Coraggio I, Bracale M. Efficiency of transient transformation in tobacco protoplasts is independent of plasmid amount. Plant Cell Rep. 2003;21(9):865–71. https://doi.org/10.1007/s00299-003-0593-x.
Article
CAS
PubMed
Google Scholar
Loyola-Vargas VM, Avilez-Montalvo RN. Plant Tissue Culture: A battle horse in the genome editing using CRISPR/Cas9. In: Methods in molecular biology (Clifton, NJ). United States; 2018. p. 131–48. Doi: https://doi.org/10.1007/978-1-4939-8594-4_7
Lozano R, Hamblin MT, Prochnik S, Jannink J-L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genom. 2015;16(1):360.
Article
Google Scholar
Lozano-Duran R, Bejarano ER. Geminivirus C2 protein might be the key player for geminiviral co-option of SCF-mediated ubiquitination. Plant Signal Behav. 2011;6(7):999–1001. https://doi.org/10.4161/psb.6.7.15499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, et al. A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant. 2015;8(8):1274–84.
Article
CAS
Google Scholar
Machida K, Cheng KT-N, Sung VM-H, Shimodaira S, Lindsay KL, Levine AM, et al. Hepatitis C virus induces a mutator phenotype: Enhanced mutations of immunoglobulin and protooncogenes. Proc Natl Acad Sci. 2004;101(12):4262–7. Doi: https://doi.org/10.1073/pnas.0303971101
Maruthi MN, Bouvaine S, Tufan HA, Mohammed IU, Hillocks RJ. Transcriptional response of virus-infected cassava and identification of putative sources of resistance for cassava brown streak disease. PLoS One. 2014;9(5):e96642. https://doi.org/10.1371/journal.pone.0096642.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, Di Fonzo N, et al. The E3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics. 2006;7(8):509–22.
Article
CAS
Google Scholar
Miozzi L, Napoli C, Sardo L, Accotto GP. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl sardinia virus and solanum lycopersicumhighlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS One. 2014;9(2):e89951. https://doi.org/10.1371/journal.pone.0089951.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montes N, Alonso-Blanco C, García-Arenal F. Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLOS Pathog. 2019;15(5):e1007810. https://doi.org/10.1371/journal.ppat.1007810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno I, Gruissem W, Vanderschuren H. Reference genes for reliable potyvirus quantitation in cassava and analysis of Cassava brown streak virus load in host varieties. J Virol Methods. 2011;177(1):49–54.
Article
CAS
Google Scholar
Muimba-Kankolongo A. Root and Tuber Crops. In: Muimba-Kankolongo ABT-FCP by SF in SA, editor. Food Crop Production by Smallholder Farmers in Southern Africa. Elsevier; 2018. p. 123–72.
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
Article
CAS
Google Scholar
Nanjareddy K, Arthikala M-K, Blanco L, Arellano ES, Lara M. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnol. 2016;16(1):53. https://doi.org/10.1186/s12896-016-0283-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nzuki I, Katari MS, Bredeson JV, Masumba E, Kapinga F, Salum K, et al. QTL mapping for pest and disease resistance in cassava and coincidence of some QTL with introgression regions derived from manihotglaziovii. Front Plant Sci. 2017;8:1168. https://doi.org/10.3389/fpls.2017.01168/full.
Article
PubMed
PubMed Central
Google Scholar
Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in Cassava. Front Plant Sci. 2017;8:1780. https://doi.org/10.3389/fpls.2017.01780.
Article
PubMed
PubMed Central
Google Scholar
Okogbenin E, Porto MCM, Egesi C, Mba C, Espinosa E, Santos LG, et al. Marker-assisted introgression of resistance to cassava mosaic disease into Latin American Germplasm for the genetic improvement of cassava in Africa. Crop Sci. 2007;47(5):1895–904. https://doi.org/10.2135/cropsci2006.10.0688.
Article
Google Scholar
Otti G, Bouvaine S, Kimata B, Mkamillo G, Kumar PL, Tomlins K, et al. High-throughput multiplex real-time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants. J ApplMicrobiol. 2016;120(5):1346–56. https://doi.org/10.1111/jam.13043.
Article
CAS
Google Scholar
Patanun O, Ueda M, Itouga M, Kato Y, Utsumi Y, Matsui A, et al. The Histone deacetylase inhibitor suberoylanilidehydroxamic acid alleviates salinity stress in Cassava. Front Plant Sci. 2017;7:2039. https://doi.org/10.3389/fpls.2016.02039/full.
Article
PubMed
PubMed Central
Google Scholar
Pierce EJ, Rey MEC. Assessing global transcriptome changes in response to South African Cassava mosaic virus [ZA-99] infection in susceptible arabidopsis thaliana. PLoS One. 2013;8(6):e67534. https://doi.org/10.1371/journal.pone.0067534.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, et al. The cassava genome: current progress. Fut Direct Trop Plant Biol. 2012;5(1):88–94. https://doi.org/10.1007/s12042-011-9088-z.
Article
CAS
Google Scholar
Ren R, Gao J, Lu C, Wei Y, Jin J, Wong S-M, et al. Highly efficient protoplast isolation and transient expression system for functional characterization of flowering related genes in cymbidium orchids. Int J Mol Sci. 2020;21(7):2264.
Article
CAS
Google Scholar
Rey C, Vanderschuren H. Cassava mosaic and brown streak diseases: current perspectives and beyond. Annu Rev Virol. 2017;4(1):429–52. https://doi.org/10.1146/annurev-virology-101416-041913.
Article
CAS
PubMed
Google Scholar
Richter KS, Kleinow T, Jeske H. Somatic homologous recombination in plants is promoted by a geminivirus in a tissue-selective manner. Virology. 2014;452–453:287–96.
Article
Google Scholar
Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 2019;47(W1):W5-10. https://doi.org/10.1093/nar/gkz342/5486273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol. 2012;196(1):13–28. https://doi.org/10.1111/j.1469-8137.2012.04266.x.
Article
CAS
PubMed
Google Scholar
Sahu PP, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance. FunctIntegr Genomics. 2014;14(1):47–58. https://doi.org/10.1007/s10142-013-0346-z.
Article
CAS
Google Scholar
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32(4):347–55.
Article
CAS
Google Scholar
Sentmanat MF, Peters ST, Florian CP, Connelly JP, Pruett-Miller SM. A survey of validation strategies for CRISPR-Cas9 editing. Sci Rep. 2018;8(1):888. https://doi.org/10.1038/s41598-018-19441-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahin EA, Shepard JF. Cassava mesophyll protoplasts: Isolation, proliferation, and shoot formation. Plant Sci Lett. 1980;17(4):459–65.
Article
CAS
Google Scholar
Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 2001;127(4):1466–75.
Article
CAS
Google Scholar
Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, et al. Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirus-encoded βC1. Mol Plant. 2016;9(6):911–25.
Article
CAS
Google Scholar
Tang AF. Process and nutrient medium for micropropagation of cassava. United States of America; US4473648A, 1984.
Uchimiya H, Murashige T. Evaluation of parameters in the isolation of viable protoplasts from cultured tobacco cells. Plant Physiol. 1974;54(6):936–44. https://doi.org/10.1104/pp.54.6.936.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanitharani R, Chellappan P, Fauquet CM. Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc Natl Acad Sci. 2003;100(16):9632–6. https://doi.org/10.1073/pnas.1733874100.
Article
CAS
PubMed
Google Scholar
Verchot J. Plant virus infection and the ubiquitin proteasome machinery: arms race along the endoplasmic reticulum. Viruses. 2016;8(11):314.
Article
Google Scholar
Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 2004;40(3):428–38. https://doi.org/10.1111/j.1365-313X.2004.02219.x.
Article
CAS
PubMed
Google Scholar
Wang L, Tan H, Wu M, Jimenez-Gongora T, Tan L, Lozano-Duran R. Dynamic virus-dependent subnuclear localization of the capsid protein from a geminivirus. Front Plant Sci. 2017;8:2165. https://doi.org/10.3389/fpls.2017.02165/full.
Article
PubMed
PubMed Central
Google Scholar
Wellink J, van Lent JW, Verver J, Sijen T, Goldbach RW, van Kammen A. The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. J Virol. 1993;67(6):3660–4.
Article
CAS
Google Scholar
Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, Kulakow P, et al. Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome. 2016. https://doi.org/10.3835/plantgenome2015.11.0118.
Article
PubMed
Google Scholar
Wu F-H, Shen S-C, Lee L-Y, Lee S-H, Chan M-T, Lin C-S. Tape-Arabidopsis sandwich - a simpler arabidopsis protoplast isolation method. Plant Methods. 2009;5(1):16. https://doi.org/10.1186/1746-4811-5-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J-Z, Liu Q, Geng X-S, Li K-M, Luo L-J, Liu J-P. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (ManihotesculentaCrantz). BMC Biotechnol. 2017;17(1):29. https://doi.org/10.1186/s12896-017-0349-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8.
Article
CAS
Google Scholar
Yoo S-D, Cho Y-H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2(7):1565–72.
Article
CAS
Google Scholar
Zainuddin IM, Schlegel K, Gruissem W, Vanderschuren H. Robust transformation procedure for the production of transgenic farmer-preferred cassava landraces. Plant Methods. 2012;8(1):24. https://doi.org/10.1186/1746-4811-8-24.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Li L-F, Munir M, Qiu H-J. RING-Domain E3 Ligase-Mediated Host-Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses. Front Immunol. 2018;9:1083. https://doi.org/10.3389/fimmu.2018.01083/full.
Article
PubMed
PubMed Central
Google Scholar