Janka GE, Lehmberg K. Hemophagocytic syndromes - An update. Blood Rev. Elsevier Ltd. 2014;28(4):135–42.
Article
Google Scholar
Risdall RJ, McKenna RW, Nesbit ME, Krivit W, Balfour HH, Simmons RL, et al. Virus-associated hemophagocytic syndrome. Cancer. 1979;44:993–1002.
Article
CAS
PubMed
Google Scholar
Ramos-Casals M, Brito-Zerón P, López-Guillermo A, Khamashta MA, Bosch X. Adult haemophagocytic syndrome. Lancet. Elsevier Ltd. 2014;383(9927):1503–16.
Article
Google Scholar
Lehmberg K, Nichols KE, Henter J-I, Girschikofsky M, Greenwood T, Jordan M, et al. Consensus recommendations for the diagnosis and management of hemophagocytic lymphohistiocytosis associated with malignancies. Haematologica. 2015;100(8):997–1004.
CAS
PubMed
PubMed Central
Google Scholar
Henter J-I, Ehrnst A, Andersson J, Elinder G. Familial hemophagocytic lymphohistiocytosis and viral infections. Acta Paediatr. 1993 Apr;82(4):369–72.
Article
CAS
PubMed
Google Scholar
Rouphael NG, Talati NJ, Vaughan C, Cunningham K, Moreira R, Gould C. Infections associated with haemophagocytic syndrome. Lancet Infect Dis. 2007;7:814–22.
Article
PubMed
Google Scholar
Rood JE, Rao S, Paessler M, Kreiger PA, Chu N, Stelekati E, et al. ST2 contributes to T cell hyperactivation and fatal hemophagocytic lymphohistiocytosis in mice. Blood. 2016;127(4):426–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood. 2004;104(3):735–43.
Article
CAS
PubMed
Google Scholar
Crozat K, Hoebe K, Ugolini S, Hong NA, Janssen E, Rutschmann S, et al. Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. J Exp Med. 2007;204(4):853–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kögl T, Müller J, Jessen B, Schmitt-graeff A, Janka G, Ehl S, et al. Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood. 2013;121(4):604–13.
Article
PubMed
Google Scholar
Pachlopnik Schmid J, Ho C-H, Diana J, Pivert G, Lehuen A, Geissmann F, et al. A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH). Eur J Immunol. 2008;38(11):3219–25.
Article
PubMed
Google Scholar
Laposova M, Pastoreková S, Tomaskova J. Lymphocytic choriomeningitis virus: invisble but not innocent. Acta Virol. 2013;57:160–70.
Article
CAS
PubMed
Google Scholar
Brisse E, Imbrechts M, Put K, Avau A, Mitera T, Berghmans N, et al. Mouse cytomegalovirus infection in BALB/c mice resembles virus-associated secondary hemophagocytic lymphohistiocytosis and shows a pathogenesis distinct from primary hemophagocytic lymphohistiocytosis. J Immunol. 2016;196:3124–34.
Article
CAS
PubMed
Google Scholar
Smee DF, Morris JLB, Leonhardt JA, Jan R, Holy A, Sidwell RW. Treatment of Murine Cytomegalovirus Infections in Severe Combined Immunodeficient Mice with Ganciclovir, Interferon, and Bropirimine. Antimicrob Agents Chemother. 1992;36(9):1837–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Xiang J, Van Doorsselaere J, Nauwynck HJ. Comparison of the pathogenesis of the highly passaged MCMV Smith strain with that of the low passaged MCMV HaNa1 isolate in BALB/c mice upon oronasal inoculation. Vet Res Vet Res. 2015;46(1):1–13.
Article
Google Scholar
Santambrogio P, Cozzi A, Levi S, Rovida E, Magni F, Albertini A, et al. Functional and immunological analysis of recombinant mouse H- and L-ferritins from Escherichia coli. Protein Expr Purif. 2000 Jun;19(1):212–8.
Article
CAS
PubMed
Google Scholar
Olver SD, Price P, Shellam GR. Cytomegalovirus hepatitis: characterization of the inflammatory infiltrate in resistant and susceptible mice. Clin Exp Immunol. 1994 Dec;98(3):375–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krmpotic A, Bubic I, Polic B, Lucin P, Jonjic S. Pathogenesis of murine cytomegalovirus infection. Microbes Infect. 2003 Nov;5(13):1263–77.
Article
CAS
PubMed
Google Scholar
Lagenaur LA, Manning WC, Vieira J, Martens CL, Mocarski ES. Structure and function of the murine cytomegalovirus sgg1 gene: a determinant of viral growth in salivary gland acinar cells. J Virol. 1994;68(12):7717–27.
CAS
PubMed
PubMed Central
Google Scholar
Cavanaugh VJ, Deng Y, Birkenbach MP, Slater JS, Campbell AE. Vigorous innate and virus-specific cytotoxic T-lymphocyte responses to murine cytomegalovirus in the submaxillary salivary gland. J Virol. 2003;77(3):1703–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pilgrim MJ, Kasman L, Grewal J, Bruorton ME, Werner P, London L, et al. A Focused Salivary Gland Infection with attenuated MCMV: An Animal Model with Prevention of Pathology Associated with Systemic MCMV Infectin. Exp Mol Pathol. 2007;82(3):269–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A. 2004;101:3516–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behrens EM, Canna SW, Slade K, Rao S, Kreiger PA, Paessler M, et al. Repeated TLR9 stimulation results in macrophage activation syndrome – like disease in mice. J Clin Invest. 2011;121(6):2264–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morello CS, Ye M, Spector DH. Development of a vaccine against murine cytomegalovirus (MCMV), consisting of plasmid DNA and formalin-inactivated MCMV, that provides long-term, complete protection against viral replication. J Virol. 2002;76(10):4822–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vliegen I, Herngreen SB, Grauls GELM, Bruggeman CA, Stassen FRM. Mouse cytomegalovirus antigenic immune stimulation is sufficient to aggravate atherosclerosis in hypercholesterolemic mice. Atherosclerosis. 2005;181(1):39–44.
Article
CAS
PubMed
Google Scholar
Döring M, Lessin I, Frenz T, Spanier J, Kessler A, Tegtmeyer P, et al. M27 expressed by cytomegalovirus counteracts effective type I interferon induction of myeloid cells but not of plasmacytoid dendritic cells. J Virol. 2014;88(23):13638–50.
Article
PubMed
PubMed Central
Google Scholar
De Clercq E, Holý A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov. 2005;4(11):928–40.
Article
CAS
PubMed
Google Scholar
Reddehase MJ. The immunogenicity of human and murine cytomegaloviruses. Curr Opin Immunol. 2000;12(4):390–6.
Article
CAS
PubMed
Google Scholar
Henter JI, Horne A, Arico M, Egeler RM, Webb D, Winiarski J, et al. HLH-2004 : Diagnostic and Therapeutic Guidelines for Hemophagocytic Lymphohistiocytosis. Pedriatr Blood Cancer. 2007;48:124–31.
Article
Google Scholar
Cetica V, Sieni E, Pende D, Danesino C, De Fusco C, Locatelli F, et al. Genetic predisposition to hemophagocytic lymphohistiocytosis: Report on 500 patients from the Italian registry. J Allergy Clin Immunol. 2016;137(1):188–96. e4
Article
PubMed
PubMed Central
Google Scholar
Li F, Yang Y, Jin F, Dehoedt C, Rao J, Zhou Y, et al. Clinical characteristics and prognostic factors of adult hemophagocytic syndrome patients : a retrospective study of increasing awareness of a disease from a single-center in China. Orphanet J Rare Dis. 2015;10(20):1–9.
Google Scholar
Brisse E, Wouters CH, Matthys P. Advances in the pathogenesis of primary and secondary haemophagocytic lymphohistiocytosis: Differences and similarities. Br J Haematol. 2016;174(2):203–17.
Article
CAS
PubMed
Google Scholar
Brisse E, Wouters CH, Matthys P. Hemophagocytic lymphohistiocytosis (HLH): A heterogeneous spectrum of cytokine-driven immune disorders. Cytokine Growth Factor Rev. Elsevier Ltd. 2015;26:263–80.
Article
CAS
Google Scholar
Pachlopnik Schmid J, Ho C-H, Chrétien F, Lefebvre JM, Pivert G, Kosco-Vilbois M, et al. Neutralization of IFNgamma defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Mol Med. 2009;1(2):112–24.
Article
PubMed
Google Scholar
Campbell AE, Cavanaugh VJ, Slater JS. The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med Microbiol Immunol. 2008;197(2):205–13.
Article
PubMed
Google Scholar
Selgrade MK, Nedrud JG, Collier AM, Gardner DE. Effects of cell source, mouse strain, and immunosuppressive treatment on production of virulent and attenuated murine cytomegalovirus. Infect Immun. 1981;33(3):840–7.
CAS
PubMed
PubMed Central
Google Scholar
Ravindranath RM, Graves MC. Attenuated murine cytomegalovirus binds to N-acetylglucosamine, and shift to virulence may involve recognition of sialic acids. J Virol. 1990;64(11):5430–40.
CAS
PubMed
PubMed Central
Google Scholar
Inada T, Mims CA. Association of Virulence of Murine Cytomegalovirus with Macrophage Susceptibility and with Virion-bound Non-neutralizing Antibody. J gen Virol. 1985;66:879–82.
Article
PubMed
Google Scholar
Sato K, Misawa N, Nie C, Satou Y, Iwakiri D, Matsuoka M, et al. A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood. 2011;117(21):5663–73.
Article
CAS
PubMed
Google Scholar
Brown DE, McCoy MW, Pilonieta MC, Nix RN, Detweiler CS. Chronic murine typhoid fever is a natural model of secondary hemophagocytic lymphohistiocytosis. PLoS One. 2010;5(2):e9441.
Article
PubMed
PubMed Central
Google Scholar
Lykens JE, Terrell CE, Zoller EE, Risma K, Jordan MB. Perforin is a critical physiologic regulator of T-cell activation. Blood. 2011;118(3):618–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cattaneo C, Oberti M, Skert C, Passi A, Farina M, Re A, et al. Adult onset hemophagocytic lymphohistiocytosis prognosis is affected by underlying disease and coexisting viral infection : analysis of a single institution series of 35 patients. Hematol Oncol. 2016; https://doi.org/10.1002/hon.2314. [Epub ahead of print]
Teramura T, Tabata Y, Yagi T, Morimoto A, Hibi S, Imashuku S. Quantitative analysis of cell-free Epstein-Barr virus genome copy number in patients with EBV-associated hemophagocytic lymphohistiocytosis. Leuk Lymphoma. 2002;43:173–9.
Article
CAS
PubMed
Google Scholar
Yamashita N, Kimura H, Morishima T. Virological aspects of Eppstein-Barr virus infections. Acta Med Okayama. 2005;59(6):239–46.
CAS
PubMed
Google Scholar
Kasahara Y, Yachie A, Takei K, Kanegane C, Okada K, Ohta K, et al. Differential cellular targets of Epstein-Barr virus (EBV) infection between acute EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Blood. 2001;98(6):1882–8.
Article
CAS
PubMed
Google Scholar
Brisse E, Wouters CH, Andrei G, Matthys P. How viruses contribute to the pathogenesis of hemophagocytic lymphohistiocytosis. Front Immunol. 2017;8(SEP):1–8.
Google Scholar
Ohyagi H, Onai N, Sato T, Yotsumoto S, Liu J, Akiba H, et al. Monocyte-derived dendritic cells perform hemophagocytosis to fine-tune excessive immune responses. Immunity. 2013;39(3):584–98.
Article
CAS
PubMed
Google Scholar
Strippoli R, Carvello F, Scianaro R, De Pasquale L, Vivarelli M, Petrini S, et al. Amplification of the response to Toll-like receptor ligands by prolonged exposure to interleukin-6 in mice: implication for the pathogenesis of macrophage activation syndrome. Arthritis Rheum. 2012 May;64(5):1680–8.
Article
CAS
PubMed
Google Scholar
Yoshida A, Ohba M, Wu X, Sasano T, Nakamura M, Endo Y. Accumulation of platelets in the lung and liver and their degranulation following antigen-challenge in sensitized mice. Br J Pharmacol. 2002;137(2):146–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lisman T, Porte RJ. The role of platelets in liver inflammation and regeneration. Semin Thromb Hemost. 2010 Mar;36(2):170–4.
Article
PubMed
Google Scholar
Iannacone M, Sitia G, Isogawa M, Marchese P, Castro MG, Lowenstein PR, et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med. NIH Public Access. 2005 Nov;11(11):1167–9.
Article
CAS
Google Scholar
Créput C, Galicier L, Buyse S, Azoulay E. Understanding organ dysfunction in hemophagocytic lymphohistiocytosis. Intensive Care Med. 2008;34(7):1177–87.
Article
PubMed
Google Scholar
Ganz T, Nemeth E. Iron Sequestration and Anemia of Inflammation. Semin Hematol. 2009;46(4):387–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grom AA. Natural killer cell dysfunction: A common pathway in systemic-onset juvenile rheumatoid arthritis, macrophage activation syndrome, and hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2004;50(3):689–98.
Article
PubMed
Google Scholar
Zoller EE, Lykens JE, Terrell CE, Aliberti J, Filipovich AH, Henson PM, et al. Hemophagocytosis causes a consumptive anemia of inflammation. J Exp Med. 2011;208(6):1203–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Humblet-Baron S, Franckaert D, Dooley J, Bornschein S, Cauwe B, Schönefeldt S, et al. IL-2 consumption by highly activated CD8 T cells induces regulatory T-cell dysfunction in patients with hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol. 2016;138(1):200–9. e8
Article
CAS
PubMed
Google Scholar
Wunderlich M, Stockman C, Devarajan M, Ravishankar N, Sexton C, Kumar AR, et al. A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti–IL-6R treatment. JCI Insight. 2016;1(15):1–12.
Article
Google Scholar
Johnson TS, Terrell CE, Millen SH, Katz JD, Hildeman D. a, Jordan MB. Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. J Immunol. 2014;192(1):84–91.
Article
CAS
PubMed
Google Scholar
Maakaroun NR, Moanna A, Jacob JT, Albrecht H. Viral infections associated with haemophagocytic syndrome. Rev Med Virol. 2010;20:93–105.
Article
CAS
PubMed
Google Scholar