Bolin SR, Stoffregen WC, Nayar GP. Postweaning multisystemic wasting syndrome induced after experimental inoculation of cesarean-derived, colostrum-deprived piglets with type 2 porcine circovirus. J Vet Diagn Investig. 2001;13:185–94.
Article
CAS
Google Scholar
Ellis JA, Bratanich A, Clark EG, et al. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome. J Vet Diagn Investig. 2000;12:21–7.
Article
CAS
Google Scholar
Allan GM, Ellis JA. Porcine circoviruses: a review. J Vet Diagn Investig. 2000;12:3–14.
Article
CAS
Google Scholar
Choi C, Chae C. Colocalization of porcine reproductive and respiratory syndrome virus and porcine circovirus 2 in porcine dermatitis and nephropathy syndrome by double-labeling technique. Vet Pathol. 2001;38:436–41.
Article
CAS
PubMed
Google Scholar
Kim J, Chung HK, Jung T. Postweaning multisystemic wasting syndrome of pigs in Korea: prevalence, microscopic lesions and coexisting microorganisms. J Vet Med Sci. 2002;64(1):57–62.
Article
PubMed
Google Scholar
Ru’bies X, Kielstein P, Costs LI. Prevalence of Haemophilus parasuis serovars isolated in Spain from 1993 to 1997. Vet Microbiol. 1999;66:245–8.
Article
Google Scholar
Solano GI, Segales J, Collins JE. Porcine reproductive and respiratory syndrome virus (PRRSv) interaction with Haemophilus parasuis. Vet Microbiol. 1997;55:247–57.
Article
CAS
PubMed
Google Scholar
Cai X, Chen H, Blackall PJ, et al. Serological characterization of Haemophilus parasuis isolates from China. Vet Microbiol. 2005;111:231–6.
Article
PubMed
Google Scholar
Li JX, Jiang P, Wang Y, et al. Genotyping of Haemophilus parasuis from diseased pigs in China and prevalence of two coexisting virus pathogens. Prev Vet Med. 2009;91(2):274–9.
Article
PubMed
Google Scholar
Harms PA, Sorden SD, Halbur PG, et al. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet Pathol. 2001;38:528–39.
Article
CAS
PubMed
Google Scholar
Ju CM, Fan HY, Tan YD, et al. Immunogenicity of a recombinant pseudorabies virus expressing ORF1-ORF2 fusion protein of porcine circovirus type 2. Vet Microbiol. 2005;109(3):179–90.
Article
CAS
PubMed
Google Scholar
Olvera A, Sibila M, Calsamiglia M. Comparison of porcine circovirus type 2 load in serum quantified by a real time PCR in postweaning multisystemic wasting syndrome and porcine dermatitis and nephropathy syndrome naturally affected pigs. J Virol Methods. 2004;117(1):75–80.
Article
CAS
PubMed
Google Scholar
Oliveira S, Blackall PJ, Pijoan C. Characterization of the diversity of Haemophilus parasuis field isolates by serotyping and genotyping. Am J Vet Res. 2003;64:435–42.
Article
PubMed
Google Scholar
Tadjine M, Mittal KR, Bourdon S. Development of a new serological test for serotyping Haemophilus parasuis isolates and determination of their prevalence in North America. J Clin Microbiol. 2004;24:839–40.
Article
Google Scholar
Yuan F, Fu S, Hu J, et al. Evaluation of recombinant proteins of Haemophilus parasuis strain SH0165 asvaccine candidates in a mouse model. Res Vet Sci. 2012;93:51–6.
Article
CAS
PubMed
Google Scholar
Chang HW, Pang VF, Chen LJ. Bacterial lipopolysaccharide induces porcine circovirus type 2 replication in swine alveolar macrophages. Vet Microbiol. 2006;115(4):311–9.
Article
CAS
PubMed
Google Scholar
Rosell C, Segales J, Plana-Duran J, et al. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol. 1999;120(1):59–78.
Article
CAS
PubMed
Google Scholar
Nielsen J, Vincent IE, Botner A, et al. Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunop. 2003;92(3):97–111.
Article
CAS
Google Scholar
Shi KC, Li HR, Guo X, et al. Changes in peripheral blood leukocyte subpopulations in piglets co-infected experimentally with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Vet Microbiol. 2008;129(3):367–77.
Article
CAS
PubMed
Google Scholar
Krakowka S, Ellis JA, Meehan B, et al. Viral wasting syndrome of swine: experimental reproduction of Postweaning multisystemic wasting syndrome in Gnotobiotic swine by Coinfection with porcine Circovirus 2 and porcine parvovirus. Vet Pathol. 2000;37:254–63.
Article
CAS
PubMed
Google Scholar
Segales J, Rosell C, Domingo M. Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol. 2004;98:137–49.
Article
CAS
PubMed
Google Scholar
Yu S, Opriessnig T, Kitikoon P, et al. Porcine circovirus type 2 (PCV2) distribution and replication in tissues and immune cells in early infected pigs. Vet Immunol Immunopathol. 2007;115:261–72.
Article
CAS
PubMed
Google Scholar
ShibaharaT SK, Ishikawa Y, et al. Porcine circovirus induces B lymphocyte depletion in pigs with wasting disease syndrome. J Vet Med Sci. 2000;62:1125–31.
Article
Google Scholar
Segalés J, Domingo M, Chianini F, et al. Immunosuppression in postweaning multisystemic wasting syndrome affected pigs. Vet Microbiol. 2004;98:151–8.
Article
PubMed
Google Scholar
Opriessnig T, Langohr I. Current state of knowledge on porcine circovirus type 2-associated lesions. Vet Pathol. 2013;50:23–38.
Article
CAS
PubMed
Google Scholar
Allan GM, Kennedy S, McNeilly F, et al. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol 1999:1:1-11.
Opriessnig T, Fenaux M, Yu S, et al. Effect of porcine parvovirus vaccination on the development of PMWS in segregated early weaned pigs coinfected with type 2 porcine circovirus and porcine parvovirus. Vet Microbiol. 2004a;3(4):209–20.
Article
Google Scholar
Allan GM, McNeilly F, Ellis J, et al. Experimental infection of colostrum deprived piglets withporcine circovirus 2 (PCV2) and porcine reproductive and respiratory syn-drome virus (PRRSV) potentiates PCV2 replication. Arch Virol. 2000a;145:2421–9.
Article
CAS
PubMed
Google Scholar
Jung K, Kim J, Ha Y, et al. The effects of transplacental porcine circovirus type 2 infection on porcine epidemic diarrhoea virus-induced enteritis in preweaning piglets. VetJ. 2006;3:445–50.
Article
Google Scholar
Ellis JA, Allan G, Krakowka S. Effect of coinfection with genogroup 1 porcine torque teno virus on porcine circovirus type 2-associated postweaning multisystemic wasting syndrome in gnotobiotic pigs. Am J Vet Res. 2008;12:1608–14.
Article
Google Scholar
Darwich L, Segales J, Mateu E. Pathogenesis of postweaning multisystemic wasting syndrome caused by porcine circovirus 2: an immune riddle. Arch Virol. 2004;149(5):857–74.
Article
CAS
PubMed
Google Scholar
Krakowka S, Ellis JA, McNeilly F, et al. Immunologic features of porcine circovirus type 2 infection. Viral Immunol. 2002;15(4):567–82.
Article
CAS
PubMed
Google Scholar
Marion K, Matthias R, Matthias E, et al. Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine. 2008;26:3443–51.
Article
Google Scholar
Allan GM, McNeilly F, Kennedy S, et al. 2000b. Immunostimulation, PCV-2 and PMWS. Vet. Rec. 2000b;147:170–1.
CAS
Google Scholar
Rovira A, Balasch M, Segalés J, et al. Experimental inoculation of conventionalpigs with porcine reproductive and respiratory syndrome virus and porcinecircovirus 2. J Virol. 2002;76:3232–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opriessnig T, Thacker EL, Yu S, et al. Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneumoniae and porcine circovirus type 2. Vet Pathol. 2004;41:624–40.
Article
CAS
PubMed
Google Scholar
Hai YW, Zhi XF, Yu ZW, et al. The effects of Mycoplasma hyopneumoniae on porcine circovirus type 2 replication in vitro PK-15 cells. ResVetSci. 2016;105:56–61.
Google Scholar
Opriessnig T, Madson DM, Roof M, et al. Experimental reproduction of porcine Circovirus type 2 (PCV2)-associated enteritis in pigs infected with PCV2 alone or concurrently with Lawsonia Intracellularis or salmonella typhimurium. J Comp Pathol. 2011;145:261–70.
Article
CAS
PubMed
Google Scholar
Kollef MH, Eisenberg PR, Ohlendorf MF, et al. The accuracy of elevated concentrations of endotoxin in bronchoalveolar lavage fluid for the rapid diagnosis of gram-negative pneumonia. Am J Respir Crit Care Med. 1996;154:1020–8.
Article
CAS
PubMed
Google Scholar
Pugin J, Auckenthaler R, Delaspre O, et al. Rapid diagnosis of gram negative pneumonia by assay of endotoxin in bronchoalveolar lavage fluid. Thorax. 1992;47:547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu PY, Tsai PC, Lin YH, et al. Expression profile of Tolllike receptor mRNA in pigs co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Res Vet Sci. 2015;98:134–41.
Article
CAS
PubMed
Google Scholar
Van RK, Nauwynck H. Proinflammatory cytokines and viral respiratory disease in pigs. Vet Res. 2000;31:87–213.
Article
Google Scholar
Van GS, Van RK, Pensaert M. Interaction between porcine reproductive-respiratory syndrome virus and bacterial endotoxin in the lungs of pigs: potentiation of cytokine production and respiratory disease. J Clin Microbiol. 2003;41:960–6.
Article
Google Scholar
Song LQ, Li LF, Deng KB, et al. Porcine reproductive and respiratory syndrome virus and bacterial endotoxin act in synergy to amplify the inflammatory response of infected macrophages. Vet Microbiol. 2011;149:213–20.
Article
Google Scholar
Van HD, Pang YT, Pei CT, et al. Expression of toll-like receptor signaling-related genes in pigs co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.Res. Vet Sci. 2015;101:180–6.
Article
Google Scholar
Fu S, Xu L, Li S, et al. Baicalin suppresses NLRP3 inflammasome and nuclear factor-kappa B (NF-kappaB) signaling during Haemophilus parasuis infection. Vet Res. 2016;47:80.
Article
PubMed
PubMed Central
Google Scholar
Yu J, Wu J, Zhang Y, et al. Concurrent highly pathogenic porcine reproductive and respiratory syndrome virus infection accelerates Haemophilus parasuis infection in conventional pigs. Vet Microbiol. 2012;158:316–21.
Article
PubMed
Google Scholar
Cloward JM, Krause DC. Mycoplasma pneumoniae J-domain protein required for terminal organelle function. Mol Microbiol. 2009;71:1296–307.
Article
CAS
PubMed
Google Scholar
Virginio VG, Gonchoroski T, Paes JA, et al. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia. Vaccine. 2014;32:5832–8.
Article
CAS
PubMed
Google Scholar
Yang W, Chong L, Ying F, et al. Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis. BMC Genomics. 2012;13:68.
Article
Google Scholar
Liu J, Bai J, Zhang L, et al. Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology. 2013;447:52–62.
Article
CAS
PubMed
Google Scholar
Nagy PD, Wang RY, Pogany J, et al. Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology. 2011;411:374–82.
Article
CAS
PubMed
Google Scholar