Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, et al. Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2017). Arch Virol. 2017;162:2505–38.
Turina M, Kormelink R, Resende RO. Resistance to Tospoviruses in vegetable crops: epidemiological and molecular aspects. Annu Rev Phytopathol. 2016;54:347–71.
Article
CAS
PubMed
Google Scholar
Oliver JE, Whitfield AE. The genus Tospovirus: emerging Bunyaviruses that threaten food security. Annu Rev Virol. 2016;3:101–24.
Article
CAS
PubMed
Google Scholar
Dong JH, Cheng XF, Yin YY, Fang Q, Ding M, Li TT, Zhang LZ, Su XX, McBeath JH, Zhang ZK. Characterization of Tomato zonate spot virus, a new tospovirus in China. Arch Virol. 2008;153:855–64.
Cai JH, Qin BX, Wei XP, Huang J, Zhou WL, Lin BS, Yao M, Hu ZZ, Feng ZK, Tao XR. Molecular identification and characterization of Tomato zonate spot virus in tobacco in Guangxi, China. Plant Dis. 2011;95:1483.
Article
Google Scholar
Huang CJ, Liu Y, Yu HQ, Li BL. Occurrence of Tomato zonate spot virus on potato in China. Plant Dis. 2015;99:733.
Article
Google Scholar
Liu Y, Huang CJ, Tao XR, Yu HQ. First report of Tomato zonate spot virus in Iris tectorum in China. Plant Dis. 2015;99:164.
Article
Google Scholar
Zheng X, Zhang J, Chen Y, Dong J, Zhang ZK. Effects of Tomato zonate spot virus infection on the development and reproduction of its vector Frankliniella occidentalis (Thysanoptera: Thripidae). Fla Entomol. 2014;97:549–54.
Article
Google Scholar
Zhang Z, Zheng K, Dong J, Fang Q, Hong J, Wang X. Clustering and cellular distribution characteristics of virus particles of Tomato spotted wilt virus and Tomato zonate spot virus in different plant hosts. Virol J. 2016;13:11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allie F, Pierce EJ, Okoniewski MJ, Rey C. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genomics. 2014;15:1006.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Zhang H, Feng M, Zuo D, Hu Y, Jiang T. Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by Strawberry vein banding virus (SVBV). Virol J. 2016;13:128.
Article
PubMed
PubMed Central
Google Scholar
Fan H, Sun H, Wang Y, Zhang Y, Wang X, Li D, Yu J, Han C. Deep sequencing-based transcriptome profiling reveals comprehensive insights into the responses of Nicotiana benthamiana to Beet necrotic yellow vein virus infections containing or lacking RNA4. PLoS One. 2014;9:e85284.
Article
PubMed
PubMed Central
Google Scholar
Geng C, Wang HY, Liu J, Yan ZY, Tian YP, Yuan XF, Gao R, Li XD. Transcriptomic changes in Nicotiana benthamiana plants inoculated with the wild-type or an attenuated mutant of Tobacco vein banding mosaic virus. Mol Plant Pathol. 2016. doi:10.1111/mpp.12471.
Gongora-Castillo E, Ibarra-Laclette E, Trejo-Saavedra DL, Rivera-Bustamante RF. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum). Virol J. 2012;9:295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goyer A, Hamlin L, Crosslin JM, Buchanan A, Chang JH. RNA-Seq analysis of resistant and susceptible potato varieties during the early stages of Potato virus Y infection. BMC Genomics. 2015;16:472.
Lu J, Du ZX, Kong J, Chen LN, Qiu YH, Li GF, Meng XH, Zhu SF. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development. PLoS One. 2012;7:e43447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun F, Fang P, Li J, Du LL, Lan Y, Zhou T, Fan YJ, Shen WB, Zhou YJ. RNA-seq-based digital gene expression analysis reveals modification of host defense responses by Rice stripe virus during disease symptom development in Arabidopsis. Virol J. 2016;13:202.
Xu Y, Zhou WW, Zhou YJ, Wu JX, Zhou XP. Transcriptome and comparative gene expression analysis of Sogatella furcifera (Horvath) in response to Southern rice black-streaked dwarf virus. PLoS One. 2012;7:e36238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech. 2011;29:644–52.
Article
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26:136–8.
Article
PubMed
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100:9440–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
Google Scholar
Xie C, Mao XZ, Huang JJ, Ding Y, Wu JM, Dong S, Kong L, Gao G, Li CY, Wei LP. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitfield AE, Ullman DE, German TL. Tospovirus-thrips interactions. Annu Rev Phytopathol. 2005;43:459–89.
Article
CAS
PubMed
Google Scholar
Choi H, Jo Y, Lian S, Jo KM, Chu H, Yoon JY, Choi SK, Kim KH, Cho WK. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X. Plant Mol Biol. 2015;88:233–48.
Article
CAS
PubMed
Google Scholar
Catoni M, Miozzi L, Fiorilli V, Lanfranco L, Accotto GP. Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by Tomato spotted wilt virus reveals organ-specific transcriptional responses. Mol Plant-Microbe Interact. 2009;22:1504–13.
Article
CAS
PubMed
Google Scholar
Li YZ, Cui HG, Cui XY, Wang AM. The altered photosynthetic machinery during compatible virus infection. Curr Opin Virol. 2016;17:19–24.
Article
CAS
PubMed
Google Scholar
Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. Mol Plant Pathol. 2017. doi:10.1111/mpp.12533.
Zhao JP, Liu Q, Zhang HL, Jia Q, Hong YG, Liu YL. The rubisco small subunit is involved in tobamovirus movement and Tm-2
2-mediated extreme resistance. Plant Physiol. 2013;161:374–83.
Article
CAS
PubMed
Google Scholar
Kong LF, Wu JX, Lu LN, Xu Y, Zhou XP. Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant. 2014;7:691–708.
Article
CAS
PubMed
Google Scholar
Jin YS, Ma DY, Dong JL, Li DF, Deng CW, Jin JC, Wang T. The HC-pro protein of Potato virus Y interacts with NtMinD of tobacco. Mol Plant-Microbe Interact. 2007;20:1505–11.
Gao L, Shen WT, Yan P, Tuo DC, Li XY, Zhou P. NIa-pro of Papaya ringspot virus interacts with papaya methionine sulfoxide reductase B1. Virology. 2012;434:78–87.
Article
CAS
PubMed
Google Scholar
Cheng YQ, Liu ZM, Xu J, Zhou T, Wang M, Chen YT, Li HF, Fan ZF. HC-pro protein of Sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. J Gen Virol. 2008;89:2046–54.
Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell. 2008;132:449–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balasubramaniam M, Kim BS, Hutchens-Williams HM, Loesch-Fries LS. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. Mol Plant-Microbe Interact. 2014;27:1107–18.
Article
PubMed
Google Scholar
Bhat S, Folimonova SY, Cole AB, Ballard KD, Lei Z, Watson BS, Sumner LW, Nelson RS. Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement. Plant Physiol. 2013;161:134–47.
Article
CAS
PubMed
Google Scholar
Abbink TE, Peart JR, Mos TN, Baulcombe DC, Bol JF, Linthorst HJ. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology. 2002;295:307–19.
Article
CAS
PubMed
Google Scholar
Liu HW, Liang CQ, Liu PF, Luo LX, Li JQ. Quantitative proteomics identifies 38 proteins that are differentially expressed in cucumber in response to Cucumber green mottle mosaic virus infection. Virol J. 2015;12:216.
Holler K, Kiraly L, Kunstler A, Muller M, Gullner G, Fattinger M, Zechmann B. Enhanced glutathione metabolism is correlated with sulfur-induced resistance in Tobacco mosaic virus-infected genetically susceptible Nicotiana tabacum plants. Mol Plant-Microbe Interact. 2010;23:1448–59.
Article
PubMed
Google Scholar
Gutha LR, Casassa LF, Harbertson JF, Naidu RA. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol. 2010;10:187.
Article
PubMed
PubMed Central
Google Scholar
Agudelo-Romero P, Carbonell P, de la Iglesia F, Carrera J, Rodrigo G, Jaramillo A, Perez-Amador MA, Elena SF. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J. 2008;5:92.
Article
PubMed
PubMed Central
Google Scholar
Yao MK, Desilets H, Charles MT, Boulanger R, Tweddell RJ. Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza. 2003;13:333–6.
Article
CAS
PubMed
Google Scholar
Ito T, Takahashi T, Oshima Y, Takusari H, Odagiri S. Solavetivone: a stress compound in Nicotiana tabacum following infection with Tobacco mosaic virus. Agric Biol Chem. 1979;43:413–4.
CAS
Google Scholar
Stefano G, Hawes C, Brandizzi F. ER - the key to the highway. Curr Opin Plant Biol. 2014;22:30–8.
Article
CAS
PubMed
Google Scholar
Singh P, Savithri HS. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain. Virology. 2015;482:133–46.
Article
CAS
PubMed
Google Scholar
Feng ZK, Xue F, Xu M, Chen XJ, Zhao WY, Garcia-Murria MJ, Mingarro I, Liu Y, Huang Y, Jiang L, et al. The ER-membrane transport system is critical for intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus. PLoS Pathog. 2016;12:e1005443.
Feng ZK, Chen XJ, Bao YQ, Dong JH, Zhang ZK, Tao XR. Nucleocapsid of Tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytol. 2013;200:1212–24.
Liu JX, Howell SH. Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol. 2016;211:418–28.
Article
CAS
PubMed
Google Scholar
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet. 2010;11:539–48.
Article
CAS
PubMed
Google Scholar