Jasin M: Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 2002, 21: 8981-8993. 10.1038/sj.onc.1206176
Article
PubMed
CAS
Google Scholar
Symington LS: Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002, 66: 630-670. 10.1128/MMBR.66.4.630-670.2002
Article
PubMed
CAS
PubMed Central
Google Scholar
Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M: Double-strand breaks and tumorigenesis. Trends Cell Biol 2001, 11: S52-59.
Article
PubMed
CAS
Google Scholar
Bleuit JS, Xu H, Ma Y, Wang T, Liu J, Morrical SW: Mediator proteins orchestrate enzyme-ssDNA assembly during T4 recombination-dependent DNA replication and repair. Proc Natl Acad Sci USA 2001, 98: 8298-8305. 10.1073/pnas.131007498
Article
PubMed
CAS
PubMed Central
Google Scholar
Mosig G: Homologous recombination. In Molecular Biology of Bacteriophage T4. Edited by: Karam JD. ASM Press, Washington, DC; 1994:54-82.
Google Scholar
Kreuzer KN: Recombination-dependent DNA replication in phage T4. Trends Biochem Sci 2000, 25: 165-173. 10.1016/S0968-0004(00)01559-0
Article
PubMed
CAS
Google Scholar
Sun H, Treco D, Szostak JW: Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 1991, 64: 1155-1161. 10.1016/0092-8674(91)90270-9
Article
PubMed
CAS
Google Scholar
Haber JE: In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. BioEssays 1995, 17: 609-620. 10.1002/bies.950170707
Article
PubMed
CAS
Google Scholar
Mickelson C, Wiberg JS: Membrane-associated DNase activity controlled by genes 46 and 47 of bacteriophage T4D and elevated DNase activity associated with the T4 das mutation. J Virol 1981, 40: 65-77.
PubMed
CAS
PubMed Central
Google Scholar
Li X, Heyer WD: RAD54 controls access to the invading 3'-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 2009, 37: 638-646. 10.1093/nar/gkn980
Article
PubMed
CAS
PubMed Central
Google Scholar
Macris MA, Sung P: Multifaceted role of the Saccharomyces cerevisiae Srs2 helicase in homologous recombination regulation. Biochem Soc Trans 2005, 33: 1447-1450. 10.1042/BST20051447
Article
PubMed
CAS
Google Scholar
Bianco PR, Tracy RB, Kowalczykowski SC: DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci 1998, 3: 570-603.
Google Scholar
Ando RA, Morrical SW: Single-stranded DNA binding properties of the UvsX recombinase of bacteriophage T4: binding parameters and effects of nucleotides. J Mol Biol 1998, 283: 785-796. 10.1006/jmbi.1998.2124
Article
PubMed
CAS
Google Scholar
Liu J, Bond JP, Morrical SW: Mechanism of presynaptic filament stabilization by the bacteriophage T4 UvsY recombination mediator protein. Biochemistry 2006, 45: 5493-5502. 10.1021/bi0525167
Article
PubMed
CAS
Google Scholar
Formosa T, Alberts BM: Purification and characterization of the T4 bacteriophage uvsX protein. J Biol Chem 1986, 261: 6107-6118.
PubMed
CAS
Google Scholar
Farb JN, Morrical SW: Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase. J Mol Biol 2009, 385: 393-404. 10.1016/j.jmb.2008.11.003
Article
PubMed
CAS
PubMed Central
Google Scholar
Conway AB, Lynch TW, Zhang Y, Fortin GS, Fung CW, Symington LS, Rice PA: Crystal structure of a Rad51 filament. Nat Struct Mol Biol 2004, 11: 791-796. 10.1038/nsmb795
Article
PubMed
CAS
Google Scholar
Lauder SD, Kowalczykowski SC: Asymmetry in the recA protein-DNA filament. J Biol Chem 1991, 266: 5450-5458.
PubMed
CAS
Google Scholar
Kodadek T, Wong ML, Alberts BM: The mechanism of homologous DNA strand exchange catalyzed by the bacteriophage T4 uvsX and gene 32 proteins. J Biol Chem 1988, 263: 9427-9436.
PubMed
CAS
Google Scholar
Riddles PW, Lehman IR: The formation of plectonemic joints by the recA protein of Escherichia coli. Requirement for ATP hydrolysis. J Biol Chem 1985, 260: 170-173.
PubMed
CAS
Google Scholar
Kowalczykowski SC, Krupp RA: DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions. Proc Natl Acad Sci USA 1995, 92: 3478-3482. 10.1073/pnas.92.8.3478
Article
PubMed
CAS
PubMed Central
Google Scholar
Harris LD, Griffith JD: UvsY protein of bacteriophage T4 is an accessory protein for in vitro catalysis of strand exchange. J Mol Biol 1989, 206: 19-27. 10.1016/0022-2836(89)90520-2
Article
PubMed
CAS
Google Scholar
Yonesaki T, Minagawa T: Synergistic action of three recombination gene products of bacteriophage T4, uvsX, uvsY, and gene 32 proteins. J Biol Chem 1989, 264: 7814-7820.
PubMed
CAS
Google Scholar
Beernink HT, Morrical SW: RMPs: recombination/replication mediator proteins. Trends Biochem Sci 1999, 24: 385-389. 10.1016/S0968-0004(99)01451-6
Article
PubMed
CAS
Google Scholar
Kodadek T, Gan DC, Stemke-Hale K: The phage T4 uvsY recombination protein stabilizes presynaptic filaments. J Biol Chem 1989, 264: 16451-16457.
PubMed
CAS
Google Scholar
Melamede RJ, Wallace SS: Properties of the nonlethal recombinational repair x and y mutants of bacteriophage T4. II. DNA synthesis. J Virol 1977, 24: 28-40.
PubMed
CAS
PubMed Central
Google Scholar
Melamede RJ, Wallace SS: Properties of the nonlethal recombinational repair deficient mutants of bacteriophage T4. III. DNA replicative intermediates and T4w. Mol Gen Genet 1980, 177: 501-509. 10.1007/BF00271490
Article
PubMed
CAS
Google Scholar
Kreuzer KN, Morrical SW: Initiation of DNA replication. In Molecular Biology of Bacteriophage T4. Edited by: Karam JD. ASM Press, Washington, DC; 1994:28-42.
Google Scholar
Salinas F, Kodadek T: Phage T4 homologous strand exchange: a DNA helicase, not the strand transferase, drives polar branch migration. Cell 1995, 82: 111-119. 10.1016/0092-8674(95)90057-8
Article
PubMed
CAS
Google Scholar
Chase JW, Williams KR: Single-stranded DNA binding proteins required for DNA replication. Annu Rev Biochem 1986, 55: 103-136. 10.1146/annurev.bi.55.070186.000535
Article
PubMed
CAS
Google Scholar
Karpel RL: T4 bacteriophage gene 32 protein. In The Biology of nonspecific DNA-protein interactions. Edited by: Revzin A. CRC Press; Boca Raton, FL; 1990:103-130.
Google Scholar
Shamoo Y, Friedman AM, Parsons MR, Konigsberg WH, Steitz TA: Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 1995, 376: 362-366. 10.1038/376362a0
Article
PubMed
CAS
Google Scholar
Williams KR, Shamoo Y, Spicer EK, Coleman JE, Konigsberg WH: Correlating structure to function in proteins: T4 Gp32 as a prototype. In Molecular Biology of Bacteriophage T4. Edited by: Karam JD. ASM Press, Washington, DC; 1994:301-304.
Google Scholar
Giedroc DP, Khan R, Barnhart K: Overexpression, purification, and characterization of recombinant T4 gene 32 protein22-301 (g32P-B). J Biol Chem 1990, 265: 11444-11455.
PubMed
CAS
Google Scholar
Hurley JM, Chervitz SA, Jarvis TC, Singer BS, Gold L: Assembly of the bacteriophage T4 replication machine requires the acidic carboxy terminus of gene 32 protein. J Mol Biol 1993, 229: 398-418. 10.1006/jmbi.1993.1042
Article
PubMed
CAS
Google Scholar
Jiang H, Giedroc D, Kodadek T: The role of protein-protein interactions in the assembly of the presynaptic filament for T4 homologous recombination. J Biol Chem 1993, 268: 7904-7911.
PubMed
CAS
Google Scholar
Ma Y, Wang T, Villemain JL, Giedroc DP, Morrical SW: Dual functions of single-stranded DNA-binding protein in helicase loading at the bacteriophage T4 DNA replication fork. J Biol Chem 2004, 279: 19035-19045. 10.1074/jbc.M311738200
Article
PubMed
CAS
Google Scholar
Morrical SW, Beernink HT, Dash A, Hempstead K: The gene 59 protein of bacteriophage T4. Characterization of protein-protein interactions with gene 32 protein, the T4 single-stranded DNA binding protein. J Biol Chem 1996, 271: 20198-20207. 10.1074/jbc.271.33.20198
Article
PubMed
CAS
Google Scholar
Xu H, Wang Y, Bleuit JS, Morrical SW: Helicase assembly protein Gp59 of bacteriophage T4: fluorescence anisotropy and sedimentation studies of complexes formed with derivatives of Gp32, the phage ssDNA binding protein. Biochemistry 2001, 40: 7651-7661. 10.1021/bi010116n
Article
PubMed
CAS
Google Scholar
Kowalczykowski SC: Thermodynamic data for protein-nucleic acid interactions. Edited by: Saenger W. Berlin: Springer-Verlag; 1990:244-263.
Google Scholar
Kowalczykowski SC, Lonberg N, Newport JW, von Hippel PH: Interactions of bacteriophage T4-coded gene 32 protein with nucleic acids. I. Characterization of the binding interactions. J Mol Biol 1981, 145: 75-104. 10.1016/0022-2836(81)90335-1
Article
PubMed
CAS
Google Scholar
Newport JW, Lonberg N, Kowalczykowski SC, von Hippel PH: Interactions of bacteriophage T4-coded gene 32 protein with nucleic acids. II. Specificity of binding to DNA and RNA. J Mol Biol 1981, 145: 105-121. 10.1016/0022-2836(81)90336-3
Article
PubMed
CAS
Google Scholar
Pant K, Karpel RL, Rouzina I, Williams MC: Salt dependent binding of T4 gene 32 protein to single and double-stranded DNA: single molecule force spectroscopy measurements. J Mol Biol 2005, 349: 317-330. 10.1016/j.jmb.2005.03.065
Article
PubMed
CAS
Google Scholar
Rouzina I, Pant K, Karpel RL, Williams MC: Theory of electrostatically regulated binding of T4 gene 32 protein to single- and double-stranded DNA. Biophys J 2005, 89: 1941-1956. 10.1529/biophysj.105.063776
Article
PubMed
CAS
PubMed Central
Google Scholar
Shokri L, Rouzina I, Williams MC: Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA. Phys Biol 2009, 6: 15096-15103. 10.1088/1478-3975/6/2/025002
Article
Google Scholar
Morrical SW, Alberts BM: The UvsY protein of bacteriophage T4 modulates recombination-dependent DNA synthesis in vitro. J Biol Chem 1990, 265: 15096-15103.
PubMed
CAS
Google Scholar
Kodadek T: The role of the bacteriophage T4 gene 32 protein in homologous pairing. J Biol Chem 1990, 265: 20966-20969.
PubMed
CAS
Google Scholar
Liu J, Qian N, Morrical SW: Dynamics of bacteriophage T4 presynaptic filament assembly from extrinsic fluorescence measurements of Gp32-single-stranded DNA interactions. J Biol Chem 2006, 281: 26308-26319. 10.1074/jbc.M604349200
Article
PubMed
CAS
Google Scholar
Yassa DS, Chou KM, Morrical SW: Characterization of an amino-terminal fragment of the bacteriophage T4 uvsY recombination protein. Biochimie 1997, 79: 275-285. 10.1016/S0300-9084(97)83515-8
Article
PubMed
CAS
Google Scholar
Beernink HT, Morrical SW: The uvsY recombination protein of bacteriophage T4 forms hexamers in the presence and absence of single-stranded DNA. Biochemistry 1998, 37: 5673-5681. 10.1021/bi9800956
Article
PubMed
CAS
Google Scholar
Xu H, Beernink HT, Morrical SW: DNA-binding properties of T4 UvsY recombination mediator protein: polynucleotide wrapping promotes high-affinity binding to single-stranded DNA. Nucleic Acids Res 2010, 38: 4821-4833. 10.1093/nar/gkq219
Article
PubMed
CAS
PubMed Central
Google Scholar
Sweezy MA, Morrical SW: Single-stranded DNA binding properties of the uvsY recombination protein of bacteriophage T4. J Mol Biol 1997, 266: 927-938. 10.1006/jmbi.1996.0829
Article
PubMed
CAS
Google Scholar
Bleuit JS, Ma Y, Munro J, Morrical SW: Mutations in a conserved motif inhibit single-stranded DNA binding and recombination mediator activities of bacteriophage T4 UvsY protein. J Biol Chem 2004, 279: 6077-6086. 10.1074/jbc.M311557200
Article
PubMed
CAS
Google Scholar
Pant K, Shokri L, Karpel RL, Morrical SW, Williams MC: Modulation of T4 gene 32 protein DNA binding activity by the recombination mediator protein UvsY. J Mol Biol 2008, 380: 799-811. 10.1016/j.jmb.2008.05.039
Article
PubMed
CAS
PubMed Central
Google Scholar
Ando RA, Morrical SW: Relationship between hexamerization and ssDNA binding affinity in the uvsY recombination protein of bacteriophage T4. Biochemistry 1999, 38: 16589-16598. 10.1021/bi991917h
Article
PubMed
CAS
Google Scholar
McGhee JD: Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers 1976, 15: 1345-1375. 10.1002/bip.1976.360150710
Article
PubMed
CAS
Google Scholar
Morrical SW, Wong ML, Alberts BM: Amplification of snap-back DNA synthesis reactions by the uvsX recombinase of bacteriophage T4. J Biol Chem 1991, 266: 14031-14038.
PubMed
CAS
Google Scholar
Farb JN, Morrical SW: Functional complementation of UvsX and UvsY mutations in the mediation of T4 homologous recombination. Nucleic Acids Res 2009, 37: 2336-2345. 10.1093/nar/gkp096
Article
PubMed
CAS
PubMed Central
Google Scholar
Griffith J, Formosa T: The uvsX protein of bacteriophage T4 arranges single-stranded and double-stranded DNA into similar helical nucleoprotein filaments. J Biol Chem 1985, 260: 4484-4491.
PubMed
CAS
Google Scholar
Kodadek T: Functional interactions between phage T4 and E. coli DNA-binding proteins during the presynapsis phase of homologous recombination. Biochem Biophys Res Commun 1990, 172: 804-810. 10.1016/0006-291X(90)90746-A
Article
PubMed
CAS
Google Scholar
Sweezy MA, Morrical SW: Biochemical interactions within a ternary complex of the bacteriophage T4 recombination proteins uvsY and gp32 bound to single-stranded DNA. Biochemistry 1999, 38: 936-944. 10.1021/bi9817055
Article
PubMed
CAS
Google Scholar
Hashimoto K, Yonesaki T: The characterization of a complex of three bacteriophage T4 recombination proteins, uvsX protein, uvsY protein, and gene 32 protein, on single-stranded DNA. J Biol Chem 1991, 266: 4883-4888.
PubMed
CAS
Google Scholar
Echols H: Multiple DNA-protein interactions governing high-precision DNA transactions. Science 1986, 233: 1050-1056. 10.1126/science.2943018
Article
PubMed
CAS
Google Scholar
Lohman TM, Kowalczykowski SC: Kinetics and mechanism of the association of the bacteriophage T4 gene 32 (helix destabilizing) protein with single-stranded nucleic acids. Evidence for protein translocation. J Mol Biol 1981, 152: 67-109. 10.1016/0022-2836(81)90096-6
Article
PubMed
CAS
Google Scholar
Hilario J, Amitani I, Baskin RJ, Kowalczykowski SC: Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. Proc Natl Acad Sci USA 2009, 106: 361-368. 10.1073/pnas.0811965106
Article
PubMed
CAS
PubMed Central
Google Scholar
Gajewski S, Webb MR, Galkin V, Egelman EH, Kreuzer KN, White SW: Crystal Structure of the Phage T4 Recombinase UvsX and Its Functional Interaction with the T4 SF2 Helicase UvsW. J Mol Biol 2010. [Epub ahead of print]
Google Scholar
Fujisawa H, Yonesaki T, Minagawa T: Sequence of the T4 recombination gene, uvsX, and its comparison with that of the recA gene of Escherichia coli. Nucleic Acids Res 1985, 13: 7473-7481. 10.1093/nar/13.20.7473
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen J, Villanueva N, Rould MA, Morrical SW: Insights into the mechanism of Rad51 recombinase from the structure and properties of a filament interface mutant. Nucleic Acids Res 2010, 38: 4889-4906. 10.1093/nar/gkq209
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen Z, Yang H, Pavletich NP: Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 2008, 453: 489-484. 10.1038/nature06971
Article
PubMed
CAS
Google Scholar
Kodadek T, Alberts BM: Stimulation of protein-directed strand exchange by a DNA helicase. Nature 1987, 326: 312-314. 10.1038/326312a0
Article
PubMed
CAS
Google Scholar
Webb MR, Plank JL, Long DT, Hsieh TS, Kreuzer KN: The phage T4 protein UvsW drives Holliday junction branch migration. J Biol Chem 2007, 282: 34401-34411. 10.1074/jbc.M705913200
Article
PubMed
CAS
PubMed Central
Google Scholar
Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P: DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 2003, 423: 305-309. 10.1038/nature01577
Article
PubMed
CAS
Google Scholar
Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA: UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. Embo J 2005, 24: 180-189. 10.1038/sj.emboj.7600485
Article
PubMed
CAS
PubMed Central
Google Scholar
Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 2003, 423: 309-312. 10.1038/nature01585
Article
PubMed
CAS
Google Scholar
Mosig G: Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu Rev Genet 1998, 32: 379-413. 10.1146/annurev.genet.32.1.379
Article
PubMed
CAS
Google Scholar
Kodadek T: Inhibition of protein-mediated homologous pairing by a DNA helicase. J Biol Chem 1991, 266: 9712-9718.
PubMed
CAS
Google Scholar
Barry J, Alberts B: A role for two DNA helicases in the replication of T4 bacteriophage DNA. J Biol Chem 1994, 269: 33063-33068.
PubMed
CAS
Google Scholar
Bedinger P, Hochstrasser M, Jongeneel CV, Alberts BM: Properties of the T4 bacteriophage DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 1983, 34: 115-123. 10.1016/0092-8674(83)90141-1
Article
PubMed
CAS
Google Scholar
Gauss P, Park K, Spencer TE, Hacker KJ: DNA helicase requirements for DNA replication during bacteriophage T4 infection. J Bacteriol 1994, 176: 1667-1672.
PubMed
CAS
PubMed Central
Google Scholar
Jongeneel CV, Formosa T, Alberts BM: Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein. J Biol Chem 1984, 259: 12925-12932.
PubMed
CAS
Google Scholar
Nanduri B, Byrd AK, Eoff RL, Tackett AJ, Raney KD: Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc Natl Acad Sci USA 2002, 99: 14722-14727. 10.1073/pnas.232401899
Article
PubMed
CAS
PubMed Central
Google Scholar
Raney KD, Benkovic SJ: Bacteriophage T4 Dda helicase translocates in a unidirectional fashion on single-stranded DNA. J Biol Chem 1995, 270: 22236-22242. 10.1074/jbc.270.38.22236
Article
PubMed
CAS
Google Scholar
Kadyrov FA, Drake JW: UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro. J Biol Chem 2004, 279: 35735-35740. 10.1074/jbc.M403942200
Article
PubMed
CAS
Google Scholar
Dong F, Gogol EP, von Hippel PH: The phage T4-coded DNA replication helicase (gp41) forms a hexamer upon activation by nucleoside triphosphate. J Biol Chem 1995, 270: 7462-7473. 10.1074/jbc.270.27.16302
PubMed
CAS
Google Scholar
Norcum MT, Warrington JA, Spiering MM, Ishmael FT, Trakselis MA, Benkovic SJ: Architecture of the bacteriophage T4 primosome: electron microscopy studies of helicase (gp41) and primase (gp61). Proc Natl Acad Sci USA 2005, 102: 3623-3626. 10.1073/pnas.0500713102
Article
PubMed
CAS
PubMed Central
Google Scholar
Morrical SW, Hempstead K, Morrical MD: The gene 59 protein of bacteriophage T4 modulates the intrinsic and single-stranded DNA-stimulated ATPase activities of gene 41 protein, the T4 replicative DNA helicase. J Biol Chem 1994, 269: 33069-33081.
PubMed
CAS
Google Scholar
Delagoutte E, von Hippel PH: Mechanistic studies of the T4 DNA (gp41) replication helicase: functional interactions of the C-terminal Tails of the helicase subunits with the T4 (gp59) helicase loader protein. J Mol Biol 2005, 347: 257-275. 10.1016/j.jmb.2005.01.036
Article
PubMed
CAS
Google Scholar
Ishmael FT, Alley SC, Benkovic SJ: Assembly of the bacteriophage T4 helicase: architecture and stoichiometry of the gp41-gp59 complex. J Biol Chem 2002, 277: 20555-20562. 10.1074/jbc.M111951200
Article
PubMed
CAS
Google Scholar
Kong D, Nossal NG, Richardson CC: Role of the bacteriophage T7 and T4 single-stranded DNA-binding proteins in the formation of joint molecules and DNA helicase-catalyzed polar branch migration. J Biol Chem 1997, 272: 8380-8387. 10.1074/jbc.272.13.8380
Article
PubMed
CAS
Google Scholar
Nossal NG: The bacteriophage T4 replication fork. In Molecular Biology of Bacteriophage T4. Edited by: Karam JD. ASM Press, Washington, DC; 1994:43-53.
Google Scholar
Derr LK, Drake JW: Isolation and genetic characterization of new uvsW alleles of bacteriophage T4. Mol Gen Genet 1990, 222: 257-264. 10.1007/BF00633826
Article
PubMed
CAS
Google Scholar
Derr LK, Kreuzer KN: Expression and function of the uvsW gene of bacteriophage T4. J Mol Biol 1990, 214: 643-656. 10.1016/0022-2836(90)90283-R
Article
PubMed
CAS
Google Scholar
Carles-Kinch K, George JW, Kreuzer KN: Bacteriophage T4 UvsW protein is a helicase involved in recombination, repair and the regulation of DNA replication origins. Embo J 1997, 16: 4142-4151. 10.1093/emboj/16.13.4142
Article
PubMed
CAS
PubMed Central
Google Scholar
Dudas KC, Kreuzer KN: UvsW protein regulates bacteriophage T4 origin-dependent replication by unwinding R-loops. Mol Cell Biol 2001, 21: 2706-2715. 10.1128/MCB.21.8.2706-2715.2001
Article
PubMed
CAS
PubMed Central
Google Scholar
Sickmier EA, Kreuzer KN, White SW: The crystal structure of the UvsW helicase from bacteriophage T4. Structure 2004, 12: 583-592. 10.1016/j.str.2004.02.016
Article
PubMed
CAS
Google Scholar
Formosa T, Alberts BM: DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 1986, 47: 793-806. 10.1016/0092-8674(86)90522-2
Article
PubMed
CAS
Google Scholar
Liu J, Doty T, Gibson B, Heyer WD: Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 2010, 17: 1260-1262. 10.1038/nsmb.1904
Article
PubMed
CAS
PubMed Central
Google Scholar
Jensen RB, Carreira A, Kowalczykowski SC: Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 2010, 467: 678-683. 10.1038/nature09399
Article
PubMed
CAS
PubMed Central
Google Scholar
San Filippo J, Sung P, Klein H: Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 2008, 77: 229-257. 10.1146/annurev.biochem.77.061306.125255
Article
PubMed
CAS
Google Scholar
Sung P, Klein H: Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 2006, 7: 739-750. 10.1038/nrm2008
Article
PubMed
CAS
Google Scholar