Kieff E: Epstein-Barr Virus and its replication. 5th edition. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007.
Google Scholar
Rickinson AB, Kieff E: Epstein-Barr Virus. 5th edition. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007.
Google Scholar
Young LS, Rickinson AB: Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004, 4: 757-768. 10.1038/nrc1452
Article
PubMed
CAS
Google Scholar
Thorley-Lawson DA: Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 2001, 1: 75-82. 10.1038/35095584
Article
PubMed
CAS
Google Scholar
Rawlins DR, Milman G, Hayward SD, Hayward GS: Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 1985, 42: 859-868. 10.1016/0092-8674(85)90282-X
Article
PubMed
CAS
Google Scholar
Kennedy G, Sugden B: EBNA-1, a Bifunctional Transcriptional Activator. Mol Cell Biol 2003, 23: 6901-6908. 10.1128/MCB.23.19.6901-6908.2003
Article
PubMed
CAS
PubMed Central
Google Scholar
Yates JL, Warren N, Reisman P, Sugden B: A cis -acting element from Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA 1984, 81: 3806-3810. 10.1073/pnas.81.12.3806
Article
PubMed
CAS
PubMed Central
Google Scholar
Altmann M, Pich D, Ruiss R, Wang J, Sugden B, Hammerschmidt W: Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV's transforming genes. Proc Natl Acad Sci USA 2006, 103: 14188-14193. 10.1073/pnas.0605985103
Article
PubMed
CAS
PubMed Central
Google Scholar
Sample J, Henson EB, Sample C: The Epstein-Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. J Virol 1992, 66: 4654-4661.
PubMed
CAS
PubMed Central
Google Scholar
Ambinder RF, Shah WA, Rawlins DR, Hayward GS, Hayward SD: Definition of the sequence requirements for binding of the EBNA-1 protein to its palindromic target sites in Epstein-Barr virus DNA. J Virol 1990, 64: 2369-2379.
PubMed
CAS
PubMed Central
Google Scholar
Bochkarev A, Barwell JA, Pfuetzner RA, Bochkareva E, Frappier L, Edwards AM: Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. Cell 1996, 84: 791-800. 10.1016/S0092-8674(00)81056-9
Article
PubMed
CAS
Google Scholar
Bochkarev A, Barwell JA, Pfuetzner RA, Furey WJ, Edwards AM, Frappier L: Crystal structure of the DNA binding domain of the Epstein-Barr virus origin binding protein EBNA-1. Cell 1995, 83: 39-46. 10.1016/0092-8674(95)90232-5
Article
PubMed
CAS
Google Scholar
Marechal V, Dehee A, Chikhi-Brachet R, Piolot T, Coppey-Moisan M, JC N: Mapping EBNA-1 domains involved in binding to metaphase chromosomes. J Virol 1999, 73: 4385-4392.
PubMed
CAS
PubMed Central
Google Scholar
Sears J, Ujihara M, Wong S, Ott C, Middeldorp J, Aiyar A: The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J Virol 2004, 78: 11487-11505. 10.1128/JVI.78.21.11487-11505.2004
Article
PubMed
CAS
PubMed Central
Google Scholar
Norseen J, Johnson FB, Lieberman PM: Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J Virol 2009, 83: 10336-10346. 10.1128/JVI.00747-09
Article
PubMed
CAS
PubMed Central
Google Scholar
Hung SC, Kang MS, Kieff E: Maintenance of Epstein-Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci, USA 2001, 98: 1865-1870. 10.1073/pnas.031584698
Article
PubMed
CAS
PubMed Central
Google Scholar
Dresang LR, Vereide DT, Sugden B: Identifying sites bound by Epstein-Barr virus nuclear antigen 1 (EBNA1) in the human genome: defining a position-weighted matrix to predict sites bound by EBNA1 in viral genomes. J Virol 2009, 83: 2930-2940. 10.1128/JVI.01974-08
Article
PubMed
CAS
PubMed Central
Google Scholar
Canaan A, Haviv I, Urban AE, Schulz VP, Hartman S, Zhang Z, Palejev D, Deisseroth AB, Lacy J, Snyder M, et al.: EBNA1 regulates cellular gene expression by binding cellular promoters. Proc Natl Acad Sci USA 2009, 106: 22421-22426. 10.1073/pnas.0911676106
Article
PubMed
CAS
PubMed Central
Google Scholar
Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S, Masucci MG: The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci USA 2009, 106: 2313-2318. 10.1073/pnas.0810619106
Article
PubMed
CAS
PubMed Central
Google Scholar
Mack AA, Sugden B: EBV is necessary for proliferation of dually infected primary effusion lymphoma cells. Cancer Res 2008, 68: 6963-6968. 10.1158/0008-5472.CAN-08-0627
Article
PubMed
CAS
PubMed Central
Google Scholar
Norio P, Schildkraut CL: Visualization of DNA replication on individual Epstein-Barr virus episomes. Science 2001, 294: 2361-2364. 10.1126/science.1064603
Article
PubMed
CAS
Google Scholar
Norio P, Schildkraut CL: Plasticity of DNA replication initiation in Epstein-Barr virus episomes. PLoS Biol 2004, 2: e152. 10.1371/journal.pbio.0020152
Article
PubMed
PubMed Central
Google Scholar
Wang J, Lindner SE, Leight ER, Sugden B: Essential elements of a licensed, mammalian plasmid origin of DNA synthesis. Mol Cell Biol 2006, 26: 1124-1134. 10.1128/MCB.26.3.1124-1134.2006
Article
PubMed
CAS
PubMed Central
Google Scholar
Deng Z, Lezina L, Chen CJ, Shtivelband S, So W, Lieberman PM: Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell 2002, 9: 493-503. 10.1016/S1097-2765(02)00476-8
Article
PubMed
CAS
Google Scholar
Day L, Chau CM, Nebozhyn M, Rennenkamp AJ, Showe M, Lieberman PM: Chromatin Profiling Of Epstein-Barr Virus Latency Control Region. J Virol 2007, 81: 6389-6401. 10.1128/JVI.02172-06
Article
PubMed
CAS
PubMed Central
Google Scholar
Hamlyn PH, Rabbitts TH: Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene. Nature 1983, 304: 135-139. 10.1038/304135a0
Article
PubMed
CAS
Google Scholar
Kapoor P, Lavoie BD, Frappier L: EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by aurora family kinases. Mol Cell Biol 2005, 25: 4934-4945. 10.1128/MCB.25.12.4934-4945.2005
Article
PubMed
CAS
PubMed Central
Google Scholar
Shire K, Ceccarelli DF, Avolio-Hunter TM, Frappier L: EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol 1999, 73: 2587-2595.
PubMed
CAS
PubMed Central
Google Scholar
Nayyar VK, Shire K, Frappier L: Mitotic chromosome interactions of Epstein-Barr nuclear antigen 1 (EBNA1) and human EBNA1-binding protein 2 (EBP2). J Cell Sci 2009, 122: 4341-4350. 10.1242/jcs.060913
Article
PubMed
CAS
PubMed Central
Google Scholar
Thomae AW, Pich D, Brocher J, Spindler MP, Berens C, Hock R, Hammerschmidt W, Schepers A: Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins. Proc Natl Acad Sci USA 2008, 105: 1692-1697. 10.1073/pnas.0707260105
Article
PubMed
CAS
PubMed Central
Google Scholar
Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell 2007, 129: 823-837. 10.1016/j.cell.2007.05.009
Article
PubMed
CAS
Google Scholar
Mackey D, Middleton T, Sugden B: Multiple regions within EBNA1 can link DNAs. J Virol 1995, 69: 6199-6208.
PubMed
CAS
PubMed Central
Google Scholar
Mackey D, Sugden B: The linking regions of EBNA1 are essential for its support of replication and transcription. Mol Cell Biol 1999, 19: 3349-3359.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chau CM, Lieberman PM: Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus. J Virol 2004, 78: 12308-12319. 10.1128/JVI.78.22.12308-12319.2004
Article
PubMed
CAS
PubMed Central
Google Scholar
Park PJ: ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009, 10: 669-680. 10.1038/nrg2641
Article
PubMed
CAS
PubMed Central
Google Scholar
Bailey TL, Williams N, Misleh C, Li WW: MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 2006, 34: W369-373. 10.1093/nar/gkl198
Article
PubMed
CAS
PubMed Central
Google Scholar
Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2: 28-36.
PubMed
CAS
Google Scholar
Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K: Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 2009, 19: 24-32. 10.1101/gr.082800.108
Article
PubMed
CAS
PubMed Central
Google Scholar