- Short report
- Open Access
Epidemiological and molecular features of dengue virus type-1 in New Caledonia, South Pacific, 2001–2013
https://doi.org/10.1186/1743-422X-11-61
© Dupont-Rouzeyrol et al.; licensee BioMed Central Ltd. 2014
- Received: 24 October 2013
- Accepted: 27 March 2014
- Published: 31 March 2014
Abstract
Background
The epidemiology of dengue in the South Pacific has been characterized by transmission of a single dominant serotype for 3–5 years, with subsequent replacement by another serotype. From 2001 to 2008 only DENV-1 was reported in the Pacific. In 2008, DENV-4 emerged and quickly displaced DENV-1 in the Pacific, except in New Caledonia (NC) where DENV-1 and DENV-4 co-circulated in 2008–2009. During 2012–2013, another DENV-1 outbreak occurred in NC, the third DENV-1 outbreak in a decade. Given that dengue is a serotype-specific immunizing infection, the recurrent outbreaks of a single serotype within a 10-year period was unexpected.
Findings
This study aimed to inform this phenomenon by examining the phylogenetic characteristics of the DENV-1 viruses in NC and other Pacific islands between 2001 and 2013. As a result, we have demonstrated that NC experienced introductions of viruses from both the Pacific (genotype IV) and South-east Asia (genotype I). Moreover, whereas genotype IV and I were co-circulating at the beginning of 2012, we observed that from the second half of 2012, i.e. during the major DENV-1 outbreak, all analyzed viruses were genotype I suggesting that a genotype switch occurred.
Conclusions
Repeated outbreaks of the same dengue serotype, as observed in NC, is uncommon in the Pacific islands. Why the earlier DENV-1 outbreaks did not induce sufficient herd immunity is unclear, and likely multifactorial, but the robust vector control program may have played a role by limiting transmission and thus maintaining a large susceptible pool in the population.
Keywords
- Dengue
- Phylogeny
- Genotype
- Epidemics
- New Caledonia
Findings
Dengue is the most prevalent arthropod-borne viral infection of humans in tropical and subtropical countries. Every year, dengue virus (DENV) infections cause more than 50 million cases, 500 000 hospitalizations and 12 500 deaths in the world[1, 2]. DENV is a single-stranded, positive-sense RNA virus of the genus Flavivirus transmitted by Aedes mosquitoes. There are four distinct serotypes (DENV-1 to DENV-4) and infection with one does not provide long-term cross-protective immunity against the three others[3, 4]. Based on the sequence of the envelope gene (E), each serotype may be divided into distinct genotypes often associated with specific geographical regions. Both epidemiological observations and in vitro studies suggest that distinct genotypes have different potential to cause severe dengue epidemics[5–7]. Thus, molecular epidemiologic studies have become a critical issue for understanding epidemic patterns of viral spread.
In the Pacific, dengue epidemics were mainly caused by a single serotype/genotype introduced from a hyper-endemic continental country. In individual Pacific Islands Countries and Territories (PICTs) the epidemiology of dengue is heterogeneous. Small PICTs sustain DENV transmission for only several months, while larger ones, like French Polynesia (PF) or New Caledonia (NC), may experience active circulation of a single serotype/genotype for several years until the emergence of a new epidemic viral strain[8–10]. In this study, we reconstruct the epidemiological and phylogenetic history of DENV-1 in NC during the last decade to better understand the NC dengue epidemiology.
Dengue epidemic profile in New Caledonia from 2001 to 2013. The number of dengue cases represents the confirmed and probable cases. This Figure presents the succession of epidemic years (2003–2004, 2008–2009 and 2012–2013) and non-epidemic years in NC. It also highlights the seasonality of DENV epidemics in NC (peak in March or April).
New Caledonia dengue epidemiological data from the years 2001 to 2013
Year | Diagnostic demands | Confirmed cases | Probable cases | Imported casesa,b | Main DENV serotype | Number of deathsb |
---|---|---|---|---|---|---|
2001 | 956 | 21 | 0 | 21 | 1 | 0 |
2002 | 1111 | 64 | 33 | 10 | 1 | 0 |
2003 | 7758 | 601 | 1997 | nd | 1 | 17 |
2004 | 2563 | 179 | 281 | nd | 1 | 2 |
2005 | 760 | 2 | 43 | 2 | 1 | 0 |
2006 | 904 | 9 | 44 | 8 | 1 | 0 |
2007 | 1012 | 33 | 6 | 19 | 1 | 0 |
2008 | 5262 | 1008 | 123 | 12 | 1 and 4 | 2 |
2009 | 14927 | 6328 | 968 | 13 | 1 and 4 | 3 |
2010 | 1841 | 25 | 67 | 1 | 1 | 0 |
2011 | 3567 | 2 | 10 | 2 | - | 0 |
2012 | 3986 | 654 | 54 | 3 | 1 | 1 |
2013 | 22375 | 8545 | 1380 | 33 | 1 | 4 |
Evolutionary relationships of E gene sequences of DENV-1 (1478 nt). Maximum-Likelihood original trees derived from 110 DENV-1 E gene sequences (90 PICTs and 20 retrieved from GenBank). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown for values over 80. The period (years) these strains have been collected is indicated just after the country isocode. The number in brackets represents the number of NC DENV-1 strains identical (nucleotide sequence) to the strain reported on the tree. The 73 (53 + 20 in brackets) NC DENV-1 strains are shown in bold. Genbank accession numbers of the DENV-1 E gene sequenced for this study are reported in Additional file1.
The occurrence of two consecutive outbreaks due to the same dengue serotype had historically already been observed in NC and other PICTs[7, 11]. Thus, the re-emergence of DENV-1 in NC in 2008, i.e. five years after the previous DENV-1 outbreak, was not surprising, particularly given the active circulation of the virus in PF. However, what was unexpected was the fact that DENV-1 was not replaced by DENV-4 during the 2008–2009 outbreak and that both serotype circulated during more than a year. The absence of serotype replacement contrasts with the historical data on the epidemiology of dengue in PICTs and with the situation reported during the same period in other PICTs[10, 15]. Otherwise in contrast with the NC historical dengue epidemiological profile[11] DENV-1 re-emerged in NC in 2012 although this serotype had already circulated in the country for ten years. As suggested by our phylogenetic analyses the recurrent re-emergences of DENV-1 over the last decade in NC mainly resulted from introductions of “Pacific clade” genotype IV viruses from other PICTs, particularly PF. In addition introduction of South-east Asian genotype I viruses also contributed to the circulation of DENV-1 in NC, at least transiently in 2002–2003[8, 20] and sustainably in 2012–2013. The fact that introductions events led to sustainable circulation of DENV-1 and the occurrence of three consecutive outbreaks suggests that, at least until 2013, the NC population did not already had acquired sufficient herd immunity against DENV-1. The observation that NC experienced strong positive human migratory threshold during the past 5 years suggest that the pool of susceptible hosts may have been resupplied by new residents[22]. Another factor that could have contributed to maintain the pool of susceptible hosts is the limitation of DENV-1 infection rates during the 2008–2009 outbreak, due to transient cross-protective immunity provided by the co-circulation of DENV-4[23]. An alternative factor that might have contributed to maintain the proportion of susceptible hosts to a level compatible with sustained DENV-1 transmission is the vector control pressure. For several years, NC Health Authorities have invested lots of efforts in maintaining efficient vector control. Combined to the NC standard of living (air conditioning…) and to climate conditions less favorable to DENV transmission during the cool season, vector control measures might have contributed to modify dengue epidemiological profile. An additional factor that could have contributed to sustainable transmission of DENV-1 in NC in 2012–2013 is the emergence of Asian genotype I. Indeed, this is the first evidence of a genotype switch (Pacific to Asian) in NC and in the Pacific region. This observation supports the hypothesis that transmission of Asian genotype I was particularly efficient in the context of NC in 2012–2013. Indeed it has been shown that genotype switch can favour the persistence of a serotype in a specific environment and that distinct genotypes can display different epidemic potential[6, 7, 24, 25]. Finally, what has been observed in NC might be the beginning of a new situation regarding the dengue circulation profile in the Pacific.
Declarations
Acknowledgments
We are grateful to M. Kama (Fiji), M. Nosa (Niue) and K. Tabutoa (Kiribati) for releasing access to their DENV sequences. We thank E. Calvez and A. Rouby for participating in the sequences analysis, L. Guillaumot, S. Mermond and D. Baudon for scientific support and the Immuno-Molecular biology lab from Institut Pasteur New Caledonia. Part of the sequencing experiments were performed on « La Plateforme du Vivant », Noumea, New Caledonia.
This work was supported by the “Fonds de Coopération Economique, Sociale et Culturelle pour le Pacifique”, Ministère des Affaires Etrangères et Européennes, France (Conventions Nu138/1/2008, 75/1/2009) ; by the “Agence Nationale pour la Recherche”, France (ANR-09-MIEN-028-01/02) and the New Caledonia Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Authors’ Affiliations
References
- Guzman MG, Kouri G: Dengue: an update. Lancet Infect Dis 2002, 2: 33-42. 10.1016/S1473-3099(01)00171-2PubMedView ArticleGoogle Scholar
- World Health Organisation: Dengue Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva: TDR/WHO; 2009. Available: http://whqlibdoc.who.int/publications/2009/9789241547871_eng.pdfGoogle Scholar
- Sabin AB: Research on dengue during World War II. Am J Trop Med Hyg 1952, 1: 30-50.PubMedGoogle Scholar
- Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, Porterfield JS, Westaway EG, Brandt WE: Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol 1989,70(Pt 1):37-43.PubMedView ArticleGoogle Scholar
- Rico-Hesse R: Microevolution and virulence of dengue viruses. Adv Virus Res 2003, 59: 315-341.PubMedPubMed CentralView ArticleGoogle Scholar
- Vu TT, Holmes EC, Duong V, Nguyen TQ, Tran TH, Quail M, Churcher C, Parkhill J, Cardosa J, Farrar J, Wills B, Lennon NJ, Birren BW, Buchy P, Henn MR, Simmons CP: Emergence of the Asian 1 genotype of dengue virus serotype 2 in viet nam: in vivo fitness advantage and lineage replacement in South-East Asia. PLoS Negl Trop Dis 2010, 4: e757. 10.1371/journal.pntd.0000757PubMedView ArticleGoogle Scholar
- Lambrechts L, Fansiri T, Pongsiri A, Thaisomboonsuk B, Klungthong C, Richardson JH, Ponlawat A, Jarman RG, Scott TW: Dengue-1 virus clade replacement in Thailand associated with enhanced mosquito transmission. J Virol 2012, 86: 1853-1861. 10.1128/JVI.06458-11PubMedPubMed CentralView ArticleGoogle Scholar
- A-Nuegoonpipat A, Berlioz-Arthaud A, Chow V, Endy T, Lowry K, le Mai Q, Ninh TU, Pyke A, Reid M, Reynes JM, Su Yun ST, Thu HM, Wong SS, Holmes EC, Aaskov J: Sustained transmission of dengue virus type 1 in the Pacific due to repeated introductions of different Asian strains. Virology 2004, 329: 505-512. 10.1016/j.virol.2004.08.029PubMedView ArticleGoogle Scholar
- Descloux E, Cao-Lormeau VM, Roche C, De Lamballerie X: Dengue 1 diversity and microevolution, French Polynesia 2001–2006: connection with epidemiology and clinics. PLoS Negl Trop Dis 2009, 3: e493. 10.1371/journal.pntd.0000493PubMedPubMed CentralView ArticleGoogle Scholar
- Li DS, Liu W, Guigon A, Mostyn C, Grant R, Aaskov J: Rapid displacement of dengue virus type 1 by type 4, Pacific region, 2007–2009. Emerg Infect Dis 2010, 16: 123-125. 10.3201/eid1601.091275PubMedPubMed CentralView ArticleGoogle Scholar
- Singh N, Kiedrzynski T, Lepers C, Benyon EK: Dengue in the Pacific–an update of the current situation. Pac Health Dialog 2005, 12: 111-119.PubMedGoogle Scholar
- Bouldouyre MA, Baumann F, Berlioz-Arthaud A, Chungue E, Lacassin F: Factors of severity at admission during an epidemic of dengue 1 in New Caledonia (South Pacific) in 2003. Scand J Infect Dis 2006, 38: 675-681. 10.1080/00365540600606432PubMedView ArticleGoogle Scholar
- Situation Sanitaire de Nouvelle-Calédonie. La Dengue. Rapport des années précédentes http://www.dass.gouv.nc/portal/page/portal/dass/observatoire_sante/situation_sanitaire/rapports_annees_precedentes
- Daudens E, Lastere S, Hirschauer C, Cao-Lormeau VM, Louette R, Roche C, Chee-Ayee A, Goffard N, Vrousos E, Renou L, Wiegandt A, Mallet HP: Epidemiology of dengue and control strategies in French Polynesia from 2006 to 2008. Bull Epidémiol Hebd 2009, 48-49-50: 499-502.Google Scholar
- Cao-Lormeau VM, Roche C, Aubry M, Teissier A, Lastere S, Daudens E, Mallet HP, Musso D, Aaskov J: Recent emergence of dengue virus serotype 4 in French polynesia results from multiple introductions from other South pacific islands. PLoS One 2011, 6: e29555. 10.1371/journal.pone.0029555PubMedPubMed CentralView ArticleGoogle Scholar
- Aubry M, Roche C, Dupont-Rouzeyrol M, Aaskov J, Viallon J, Marfel M, Lalita P, Elbourne-Duituturaga S, Chanteau S, Musso D, Pavlin BI, Harrison D, Kool JL, Cao-Lormeau VM: Use of serum and blood samples on filter paper to improve the surveillance of dengue in Pacific Island Countries. J Clin Virol 2012, 55: 23-29. 10.1016/j.jcv.2012.05.010PubMedView ArticleGoogle Scholar
- Chungue E, Cassar O, Drouet MT, Guzman MG, Laille M, Rosen L, Deubel V: Molecular epidemiology of dengue-1 and dengue-4 viruses. J Gen Virol 1995,76(Pt 7):1877-1884.PubMedView ArticleGoogle Scholar
- Alibert A, Pfannstiel A, Grangeon J: Chikungunya outbreak in New Caledonia in 2011 Status report as at 22 August 2011. Inform'Action 2011, 34: 3-9.Google Scholar
- Dupont-Rouzeyrol M, Caro V, Guillaumot L, Vazeille M, D'Ortenzio E, Thiberge JM, Baroux N, Gourinat AC, Grandadam M, Failloux AB: Chikungunya virus and the mosquito vector Aedes aegypti in New Caledonia (South Pacific Region). Vector Borne Zoonotic Dis 2012, 12: 1036-1041. 10.1089/vbz.2011.0937PubMedView ArticleGoogle Scholar
- Aaskov J, Buzacott K, Field E, Lowry K, Berlioz-Arthaud A, Holmes EC: Multiple recombinant dengue type 1 viruses in an isolate from a dengue patient. J Gen Virol 2007, 88: 3334-3340. 10.1099/vir.0.83122-0PubMedPubMed CentralView ArticleGoogle Scholar
- Yamanaka A, Mulyatno KC, Susilowati H, Hendrianto E, Ginting AP, Sary DD, Rantam FA, Soegijanto S, Konishi E: Displacement of the predominant dengue virus from type 2 to type 1 with a subsequent genotype shift from IV to I in Surabaya, Indonesia 2008–2010. PLoS One 2011, 6: e27322. 10.1371/journal.pone.0027322PubMedPubMed CentralView ArticleGoogle Scholar
- Rivoilan P, Broustet D: Recensement de la population en Nouvelle-Calédonie en 2009. INSEE Première 2011, 1138: 1-4.Google Scholar
- Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, Yoon IK, Gibbons RV, Burke DS, Cummings DA: Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface 2013, 10: 20130414. 10.1098/rsif.2013.0414PubMedPubMed CentralView ArticleGoogle Scholar
- Teoh BT, Sam SS, Tan KK, Johari J, Shu MH, Danlami MB, Abd-Jamil J, MatRahim N, Mahadi NM, AbuBakar S: Dengue virus type 1 clade replacement in recurring homotypic outbreaks. BMC Evol Biol 2013, 13: 213. 10.1186/1471-2148-13-213PubMedPubMed CentralView ArticleGoogle Scholar
- Lourenco J, Recker M: Viral and epidemiological determinants of the invasion dynamics of novel dengue genotypes. PLoS Negl Trop Dis 2010, 4: e894. 10.1371/journal.pntd.0000894PubMedPubMed CentralView ArticleGoogle Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.