Pereira C, Silva YJ, Santos AL, Cunha A, Gomes NC, Almeida A. Bacteriophages with potential for inactivation of fish pathogenic bacteria: survival, host specificity and effect on bacterial community structure. Mar Drugs. 2011;9(11):2236–55. https://doi.org/10.3390/md9112236.
Article
PubMed
PubMed Central
Google Scholar
Millezi AF, Cardoso M, Alves E, Piccoli RH. Reduction of Aeromonas hidrophyla biofilm on stainless stell surface by essential oils. Braz J Microbiol. 2013;44(1):73–80. https://doi.org/10.1590/S1517-83822013005000015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutili FJ, Kreutz LC, Noro M, Gressler LT, Heinzmann BM, de Vargas AC, et al. The use of eugenol against Aeromonas hydrophila and its effect on hematological and immunological parameters in silver catfish (Rhamdia quelen). Vet Immunol Immunopathol. 2014;157(3–4):142–8. https://doi.org/10.1016/j.vetimm.2013.11.009.
Article
CAS
PubMed
Google Scholar
Bandeira Junior G, Sutili FJ, Gressler LT, Ely VL, Silveira BP, Tasca C, et al. Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria. J Appl Microbiol. 2018. https://doi.org/10.1111/jam.13906.
Ghatak S, Blom J, Das S, Sanjukta R, Puro K, Mawlong M, et al. Pan-genome analysis of Aeromonas hydrophila, Aeromonas veronii and Aeromonas caviae indicates phylogenomic diversity and greater pathogenic potential for Aeromonas hydrophila. Antonie Van Leeuwenhoek. 2016;109(7):945–56. https://doi.org/10.1007/s10482-016-0693-6.
Article
PubMed
Google Scholar
Paniagua C, Rivero O, Anguita J, Naharro G. Pathogenicity factors and virulence for rainbow trout (Salmo gairdneri) of motile Aeromonas spp. isolated from a river. J Clin Microbiol. 1990;28(2):350–5 https://www.ncbi.nlm.nih.gov/pubmed/2312678.
CAS
PubMed
PubMed Central
Google Scholar
Austin B, Austin DA. Bacterial Fish Pathogens, Disease of farmed and wild fish. 4th ed; 2007.
Google Scholar
Swain P, Behura A, Dash S, Nayak SK. Serum antibody response of Indian major carp, Labeo rohita to three species of pathogenic bacteria; Aeromonas hydrophila, Edwardsiella tarda and Pseudomonas fluorescens. Vet Immunol Immunopathol. 2007;117(1–2):137–41. https://doi.org/10.1016/j.vetimm.2007.02.010.
Article
CAS
PubMed
Google Scholar
Wang HR, Hu YH, Zhang WW, Sun L. Construction of an attenuated Pseudomonas fluorescens strain and evaluation of its potential as a cross-protective vaccine. Vaccine. 2009;27(30):4047–55 https://www.ncbi.nlm.nih.gov/pubmed/19501788.
Article
CAS
Google Scholar
Sun YY, Chi H, Sun L. Pseudomonas fluorescens filamentous hemagglutinin, an iron-regulated protein, is an important virulence factor that modulates bacterial pathogenicity. Front Microbiol. 2016;7:1320. https://doi.org/10.3389/fmicb.2016.01320.
Article
PubMed
PubMed Central
Google Scholar
Watts JEM, Schreier HJ, Lanska L, Hale MS. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar Drugs. 2017;15(6). https://doi.org/10.3390/md15060158.
Matyar F, Akkan T, Uçak Y, Eraslan B. Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (Northeast Mediterranean Sea). Environ Monit Assess. 2010;167(1–4):309–20. https://doi.org/10.1007/s10661-009-1051-1.
Article
CAS
PubMed
Google Scholar
Le TS, Nguyen TH, Vo HP, Doan VC, Nguyen HL, Tran MT, et al. Protective effects of bacteriophages against Aeromonas hydrophila species causing motile Aeromonas septicemia (MAS) in striped catfish. Antibiotics. 2018;7(1). https://doi.org/10.3390/antibiotics7010016.
Kokkari C, Sarropoulou E, Bastias R, Mandalakis M, Katharios P. Isolation and characterization of a novel bacteriophage infecting Vibrio alginolyticus. Arch Microbiol. 2018;200(5):707–18. https://doi.org/10.1007/s00203-018-1480-8.
Article
CAS
PubMed
Google Scholar
Richards GP. Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage. 2014;4(4):975540. https://doi.org/10.4161/21597081.2014.975540.
Article
Google Scholar
Letchumanan V, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Goh BH, et al. Insights into bacteriophage application in controlling Vibrio species. Front Microbiol. 2016;7:1114. https://doi.org/10.3389/fmicb.2016.01114.
Article
PubMed
PubMed Central
Google Scholar
Vinod MG, Shivu MM, Umesha KR, Rajeeva BC, Krohne G, Karunasagar I, et al. Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture. 2006;255:117–24. https://doi.org/10.1016/j.aquaculture.2005.12.003.
Article
CAS
Google Scholar
Karunasagar I, Shivu MM, Girisha SK, Krohne G, Karunasagar I. Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture. 2007;268:288–92. https://doi.org/10.1016/j.aquaculture.2007.04.049.
Article
Google Scholar
Higuera G, Bastías R, Tsertsvadze G, Romero J, Espejo RT. Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar. Aquaculture. 2013;392-395:128–33. https://doi.org/10.1016/j.aquaculture.2013.02.013.
Article
CAS
Google Scholar
Mateus L, Costa L, Silva YJ, Pereira C, Cunha A, Almeida A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture. 2014;424–425:167–73. https://doi.org/10.1016/j.aquaculture.2014.01.001.
Article
Google Scholar
Silva YJ, Costa L, Pereira C, Mateus C, Cunha A, Calado R, et al. Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS One. 2014;9(12):114197. https://doi.org/10.1371/journal.pone.0114197.
Article
CAS
Google Scholar
Tan D, Gram L, Middelboe M. Vibriophages and their interactions with the fish pathogen Vibrio anguillarum. Appl Environ Microbiol. 2014;80(10):3128–40. https://doi.org/10.1128/AEM.03544-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khairnar K, Raut MP, Chandekar RH, Sanmukh SG, Paunikar WN. Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in catfish. BMC Vet Res. 2013;9:264. https://doi.org/10.1186/1746-6148-9-264.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rørbo N, Rønneseth A, Kalatzis PG, Rasmussen BB, Engell-Sørensen K, Kleppen HP, et al. Exploring the effect of phage therapy in preventing. Antibiotics. 2018;7:2. https://doi.org/10.3390/antibiotics7020042.
Article
Google Scholar
Hendrix RW. Evolution: the long evolutionary reach of viruses. Curr Biol. 1999;9:914–7. https://doi.org/10.1016/S0960-9822(00)80103-7.
Article
Google Scholar
Hendrix RW. Bacteriophages: evolution of the majority. Theor Popul Biol. 2002;61:471–80. https://doi.org/10.1006/tpbi.2002.1590.
Article
PubMed
Google Scholar
Borrell N, Acinas SG, Figueras MJ, Martínez-Murcia AJ. Identification of Aeromonas clinical isolates by restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. J Clin Microbiol. 1997;35(7):1671–4 https://www.ncbi.nlm.nih.gov/pubmed/9196171.
CAS
PubMed
PubMed Central
Google Scholar
Scarpellini M, Franzetti L, Galli A. Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol Lett. 2004;15:257–60. https://doi.org/10.1016/j.femsle.2004.05.043.
Article
CAS
Google Scholar
Van Twest R, Kropinski AM. Bacteriophage enrichment from water and soil. Methods Mol Biol. 2009;501:15–21. https://doi.org/10.1007/978-1-60327-164-6_2.
Article
CAS
PubMed
Google Scholar
Adams MH. Bacteriophages; 1959.
Google Scholar
Maszewska A, Zygmunt M, Grzejdziak I, Różalski A. Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter-associated urinary tract infections. J Appl Microbiol. 2018;125(5):1253–65. https://doi.org/10.1111/jam.14026 Epub 2018 Jul 18.
Article
CAS
PubMed
Google Scholar
Su MT, Venkatesh TV, Bodmer R. Large- and small-scale preparation of bacteriophage lambda lysate and DNA. BioTechniques. 1998;25(1):44–6 https://www.ncbi.nlm.nih.gov/pubmed/9668973.
Article
CAS
Google Scholar
McNair K, Bailey BA, Edwards RA. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics. 2012;28(5):614–8. https://doi.org/10.1093/bioinformatics/bts014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laslett D, Canback BARAGORN. A program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32(1):11–6. https://doi.org/10.1093/nar/gkh152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 8:275–82. https://doi.org/10.1093/bioinformatics/8.3.275.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35:1547–9. https://doi.org/10.1093/molbev/msy096.
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4. https://doi.org/10.1093/jac/dks261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52(5):1501–10. https://doi.org/10.1128/JCM.03617-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ackermann HW. 5500 phages examined in the electron microscope. Arch Virol. 2007;152(2):227–43. https://doi.org/10.1007/s00705-006-0849-1.
Article
CAS
PubMed
Google Scholar
Clark CG, Chen CY, Berry C, Walker M, McCorrister SJ, Chong PM, et al. Comparison of genomes and proteomes of four whole genome-sequenced campylobacter jejuni from different phylogenetic backgrounds. PLoS One. 2018;13(1):0190836. https://doi.org/10.1371/journal.pone.0190836.
Article
CAS
Google Scholar
Wang JB, Lin NT, Tseng YH, Weng SF. Genomic characterization of the novel Aeromonas hydrophila phage Ahp1 suggests the derivation of a new subgroup from phiKMV-like family. PLoS One. 2016;11(9):0162060. https://doi.org/10.1371/journal.pone.0162060.
Article
CAS
Google Scholar
Wojtus JK, Fitch JL, Christian E, Dalefield T, Lawes JK, Kumar K, et al. Complete genome sequences of three novel. Genome Announc. 2017;5(31). https://doi.org/10.1128/genomeA.00725-17.
Nowicki G, Walkowiak-Nowicka K, Zemleduch-Barylska A, Mleczko A, Frąckowiak P, Nowaczyk N, et al. Complete genome sequences of two novel autographiviruses infecting a bacterium from the Pseudomonas fluorescens group. Arch Virol. 2017;162(9):2907–11. https://doi.org/10.1007/s00705-017-3419-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison S, Rainnie DJ. Bacteriophage therapy: an alternative to antibiotic theraphy in aquaculture? Fisheries and oceans. 2004. ISSN: 0706-6457.
Google Scholar
Skurnik M, Strauch E. Phage therapy: facts and fiction. Int J Med Microbiol. 2006;296(1):5–14. https://doi.org/10.1016/j.ijmm.2005.09.002.
Article
CAS
PubMed
Google Scholar
Pirnay JP, De Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaneechoutte M, et al. The phage therapy paradigm: prêt-à-porter or Sur-mesure? Pharm Res. 2011;28(4):934–7. https://doi.org/10.1007/s11095-010-0313-5.
Article
CAS
PubMed
Google Scholar
Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M, Łobocka M, Łusiak-Szelachowska M, Górski A. Bacteriophage procurement for therapeutic purposes. Front Microbiol. 2016;7:1177. https://doi.org/10.3389/fmicb.2016.01177.
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Kraft BL, Pan Y, Wall SK, Saez AC, Ebner PD. Development of an anti-Salmonella phage cocktail with increased host range. Foodborne Pathog Dis. 2010;7(11):1415–9. https://doi.org/10.1089/fpd.2010.0621.
Article
PubMed
Google Scholar
Seo BJ, Song ET, Lee K, Kim JW, Jeong CG, Moon SH, et al. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella typhimurium. J Vet Med Sci. 2018;80(6):851–60. https://doi.org/10.1292/jvms.17-0501.
Article
PubMed
PubMed Central
Google Scholar
Ul Haq I, Chaudhry WN, Andleeb S, Qadri I. Isolation and partial characterization of a virulent bacteriophage IHQ1 specific for Aeromonas punctata from stream water. Microb Ecol. 2012;63(4):954–63. https://doi.org/10.1007/s00248-011-9944-2.
Article
CAS
PubMed
Google Scholar
Jun JW, Kimb JH, Shina SP, Hana JE, Chai JY, Park SC. Protective effects of the Aeromonas phages pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by Aeromonas hydrophila. Aquaculture. 2013;416–417:289–95. https://doi.org/10.1016/j.aquaculture.2013.09.045.
Article
Google Scholar
Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, et al. Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Curr Microbiol. 2012;64(5):418–26. https://doi.org/10.1007/s00284-012-0091-x.
Article
CAS
PubMed
Google Scholar