- Short report
- Open Access
Avian influenza virus risk assessment in falconry
https://doi.org/10.1186/1743-422X-8-187
© Kohls et al; licensee BioMed Central Ltd. 2011
- Received: 8 February 2011
- Accepted: 23 April 2011
- Published: 23 April 2011
Abstract
Background
There is a continuing threat of human infections with avian influenza viruses (AIV). In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks) as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds) seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds.
Findings
During 2 hunting seasons (2006/2007 and 2007/2008) falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54) in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74) and 3.8% of ducks (n = 53) using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13.
Conclusion
Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey.
Keywords
- Avian Influenza Virus
- Haemagglutination Inhibition
- Hunting Season
- Cloacal Swab
- Peregrine Falcon
Findings
Human infections with avian influenza viruses have been reported for the subtypes H5, H7, and H9 [1]. Siembieda et al. [2] determined an eight-time higher risk for waterfowl hunters to come into contact with AIV compared to non-hunters. Dishman et al. [3] found that duck hunters were engaged in several practices that could expose them to AIV infected wildlife. Gill et al. [4] detected antibodies against AIV subtype H11 in 1 out of 39 tested waterfowl hunters. Falconers might even be at higher risk, since hunting with falconry birds represents a selective hunting style, meaning sick, easy to catch birds are caught at a higher frequency [5]. Potentially, such birds could suffer from an AIV infection [6]. Besides natural infections of free ranging birds of prey with highly pathogenic (HP) H5N1 virus [7], the first case of HP H5N1 infection in a captive falconry bird occurred in a Saker falcon in Saudi Arabia [8], followed by the culling of 37 falconry birds after confirmation of H5N1 infections in 5 falcons [9]. In 2007, H5N1 was transmitted to 10 falconry birds with direct hunting contact to infected Houbara bustards [10]. The close contact of falconers to falconry birds and their prey could pose an enhanced risk of infection with AIV to the falconer. Moreover, because falconers also come into contact with human influenza virus strains, they might contribute to the development of new pandemic virus strains should there be a co-infection with human influenza viruses. To investigate the risk of AIV transmission from falconry birds and their prey to falconers and to assess falconers in Germany as a risk group, we conducted a field study to evaluate the prevalence of AIV in falconry birds and their captured prey as well as the occurrence of antibodies against several AIV subtypes in falconers. Membership figures of the largest German falconry association, "Deutscher Falkenorden" indicate approximately 1500 falconers in Germany. This figure correspond to generally all falconers, but the number of falconers who actually go hunting with raptors, and therefore might fall into a risk group, is much smaller and ranges about 500 to 600 falconers. Of these about only 100 - 200 are actively hunting avian prey whereas most of them are hunting small mammals like rabbits and hares. For our study, 43 active falconers provided one serum sample and took tracheal and cloacal swabs from 1080 prey birds during 2 hunting seasons (September through March 2006/2007 and 2007/2008). The geographical range covered by the falconers comprised 11 out of 16 federal German states with a focus on north-west Germany, namely the federal states Lowers Saxony and North Rhine Westphalia (51.2% of falconers). The falconers captured the prey birds with 54 falconry birds in 14 out of 16 federal states in Germany, again with a focus on Lowers Saxony and North Rhine Westphalia (80.5% of prey samples). Sampled prey species comprised 759 raven crows (Corvus corone corone, 70.3%), 89 common pheasants (Phasianus colchicus, 8.2%), 74 gulls (Laridae, 6.9%), 59 grey partridges (Perdix perdix, 5.5%), 53 ducks (Anatidae, 4.9%), 31 black-billed magpies (Pica pica, 2.9%), 7 common wood pigeons (Columba palumbus, 0.6%), 6 common coots (Fulica atra, 0.6%) and 2 Egyptian geese (Alopochen aegyptiacus, 0.2%). The falconers were instructed to take dry swab samples immediately after their falconry bird killed the prey and to keep the samples chilled during transport. Samples were sent within a period of seven days to our institute, meanwhile stored refrigerated. At our institute, the samples were stored at -80°C until processed. Swabs were investigated by virus isolation in SPF embryonated chicken eggs as described by OIE [11] and by molecular methods: RNA was firstly screened for the presence of Influenza A virus RNA as described by Spackman et al. [12], using primers modified by Hoffman. In case of a positive result, samples were further characterized by real time RT-PCR for subtypes H5, H6 and H9 and nested RT-PCR for H7 as described by others [13–15]. Further subtyping was carried out at the Friedrich Loeffler Institute (Insel Riems, Germany) using microarray analysis [16].
Characteristics of the avian prey birds with detection of Influenza A virus RNA in Germany
Species | Cloaca (Ct) | Trachea (Ct) | Age* | Origin (Town, State) | Date | Falconry Bird | Falconer | subtype |
---|---|---|---|---|---|---|---|---|
Common gull | + (33.3) | + (29.6) | Juv | Wolfenbüttel, Lower Saxony | 2006 Nov 03 | Gyrfalcon | M40 | H13N6 |
Herring gull | + (33.2) | - | Juv | Wolfenbüttel, Lower Saxony | 2007 Jan 20 | Gyrfalcon | M40 | H?N6 |
Herring gull | + (29.5) | + (32.2) | Ad | Salzgitter, Lower Saxony | 2007 Feb 07 | Gyrfalcon | M40 | H?N6 |
Mallard | + (21) | + (36.3) | Ad | Lauenhagen, Lower Saxony | 2007 Oct 15 | Peregrine falcon | M50 | H3N2 |
Mallard | + (32.6) | - | Juv | Lauenhagen, Lower Saxony | 2007 Oct 17 | Peregrine falcon | M50 | H3N2 H9N2 |
In conclusion, we were able to show that the AIV prevalence of prey birds from falconry is generally low, both in randomly selected sampled birds from the wild bird monitoring program, and also in actually hunted prey birds. We were also able to show that falconry birds that come into contact with AIV through their prey do not necessarily become infected. A reason for this could be that in most cases falconry birds are not allowed to eat the whole prey after the hunt, but after a short time are offered an alternative prey, such as dead chicken or mice, so that the falconer can take the catch. This short duration might not be long enough for infection. Concerning free ranging raptors the risk of infection would be higher, since these usually feed on the whole prey animal and infections of carnivores feeding on H5N1 infected animals have been reported in literature [10, 19]. We were unable to investigate 3 falconry birds, because of accidents or non-return to the falconer during the study period. According to the falconers, these birds did not show any signs of disease until the point when they resigned from the study. Thus, infection with HPAIV H5N1 for these birds seems unlikely since Lierz et al. [20] showed that falcons are highly susceptible to HPAIV H5N1. All serum samples from the falconers showed positive results using the competitive multi-species Influenza A-ELISA. Since this method detects antibodies against all influenza A viruses regardless if of avian or human origin, this result is most likely due to previous contact to human influenza A viruses of the subtypes H1 and H3 through infection or vaccination. The following investigation using microneutralization assay to detect antibodies against subtypes H5 and H7 as well as the screening of the sera for antibodies against subtypes H9 and H13 using HI gave negative results. Currently falconers do not seem to carry a higher risk for getting infected with AIV through the handling of falconry birds and their prey.
Declarations
Acknowledgements
We thank the German falconry association "Deutscher Falkenorden" for partial financial support of this study. Bettina Valder, Gabi Grothehenn and Ute Hopf-Guevara are thanked for technical laboratory support, Christoph Staubach for his help with the national wild bird monitoring database. Sabine Düpre is being thanked for her help with sampling the falconry birds.
The study was approved by the Ethics Commission of the Robert Koch Institute, Berlin.
Authors’ Affiliations
References
- Peiris JS, de Jong MD, Guan Y: Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 2007, 20: 243-267. 10.1128/CMR.00037-06PubMed CentralView ArticlePubMedGoogle Scholar
- Siembieda J, Johnson CK, Boyce W, Sandrock C, Cardona C: Risk for avian influenza virus exposure at human-wildlife interface. Emerg Infect Dis 2008, 14: 1151-1153. 10.3201/eid1407.080066PubMed CentralView ArticlePubMedGoogle Scholar
- Dishman H, Stallknecht D, Cole D: Duck hunters' perceptions of risk for avian influenza, Georgia, USA. Emerg Infect Dis 2010, 16: 1279-1281.PubMed CentralView ArticlePubMedGoogle Scholar
- Gill JS, Webby R, Gilchrist MJ, Gray GC: Avian influenza among waterfowl hunters and wildlife professionals. Emerg Infect Dis 2006, 12: 1284-1286.PubMed CentralView ArticlePubMedGoogle Scholar
- Temple SA: Do predators always capture substandard individuals disproportionately from prey populations? Ecology 1987, 63: 669-674.View ArticleGoogle Scholar
- Kent J, Bailey T, Silvanose CD, McKeown S, Wernery U, Kinne J, Manvell R: An outbreak of low pathogenic avian influenza in a mixed species aviculture unit in dubai in 2005. Vet Clin North Am Exot Anim Pract 2006, 9: 523-531. 10.1016/j.cvex.2006.05.012View ArticlePubMedGoogle Scholar
- Globig A, Staubach C, Beer M, Köppen U, Fiedler W, Nieburg M, Wilking H, Starick E, Teifke JP, Werner O, Unger F, Grund C, Wolf C, Roost H, Feldhusen F, Conraths FJ, Mettenleiter TC, Harder T: Epidemiological and ornithological aspects of outbreaks of highly pathogenic avian influenza virus H5N1 of Asian lineage in wild birds in Germany, 2006 and 2007. Transbound Emerg Dis 2009, 56: 57-72. 10.1111/j.1865-1682.2008.01061.xView ArticlePubMedGoogle Scholar
- Samour J: Avian Influenza in Saudi falcons. Falco Newsletter 2006, 27: 21.Google Scholar
- Avian Influenza - Eurasia (37): Saudi-Arabia, falcon[http://www.promedmail.org/pls/apex/f?p=2400:1001:::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,31812]
- Khan OA, Shuaib MA, Rhman SS, Ismail MM, Hammad YA, Baky MH, Fusaro A, Salviato A, Cattoli G: Isolation and identification of highly pa-thogenic avian influenza H5N1 virus from Houbara bustards (Chlamydotis undulata macqueenii) and contact falcons. Avian Pathol 2009, 38: 35-39. 10.1080/03079450802609815View ArticlePubMedGoogle Scholar
- Avian Influenza. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals2009. [http://www.oie.int/eng/normes/mmanual/A_summry.htm]
- Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, Lohman K, Daum LT, Suarez DL: Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 2002, 40: 3256-3260. 10.1128/JCM.40.9.3256-3260.2002PubMed CentralView ArticlePubMedGoogle Scholar
- Slomka MJ, Pavlidis T, Banks J, Shell W, McNally A, Essen S, Brown I: Validated H5 Eurasian real-time reverse transcriptase-polymerase chain reaction and its application in H5N1 outbreaks in 2005-2006. Avian Dis 2007, 51: 373-377. 10.1637/7664-060906R1.1View ArticlePubMedGoogle Scholar
- Das A, Suarez DL: Development and bench validation of real-time reverse transcription polymerase chain reaction protocols for rapid detection of the sub-types H6, H9, and H11 of avian influenza viruses in experimental samples. J Vet Diagn Invest 2007, 19: 625-634. 10.1177/104063870701900603View ArticlePubMedGoogle Scholar
- Starick E, Römer-Oberdörfer A, Werner O: Type- and subtype-specific RT-PCR assays for avian influenza A viruses (AIV). J Vet Med B Infect Dis Vet Public Health 2000, 47: 295-301.View ArticlePubMedGoogle Scholar
- Gall A, Hoffmann B, Harder T, Grund C, Höper D, Beer M: Design and validation of a microarray for detection, hemagglutinin subtyping, and pathotyping of avian influenza viruses. J Clin Microbiol 2009, 47: 327-334. 10.1128/JCM.01330-08PubMed CentralView ArticlePubMedGoogle Scholar
- Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus AD, Fouchier RA: Global patterns of influenza a virus in wild birds. Science 2006, 312: 384-388. 10.1126/science.1122438View ArticlePubMedGoogle Scholar
- Kayali G, Setterquist SF, Capuano AW, Myers KP, Gill JS, Gray GC: Testing human sera for antibodies against avian influenza viruses: horse RBC hemagglutination inhibition vs. microneutralization assays. J Clin Virol 2008, 43: 73-78. 10.1016/j.jcv.2008.04.013PubMed CentralView ArticlePubMedGoogle Scholar
- Keawcharoen J, Oraveerakul K, Kuiken T, Fouchier RA, Amonsin A, Payungporn S, Noppornpanth S, Wattanodorn S, Theambooniers A, Tantilertcharoen R, Pattanarangsan R, Arya N, Ratanakorn P, Osterhaus DM, Poovorawan Y: Avian influenza in tigers and leopards. Emerg Infect Dis 2004, 10: 2189-2191.PubMed CentralView ArticlePubMedGoogle Scholar
- Lierz M, Hafez HM, Klopfleisch R, Lüschow D, Prusas C, Teifke JP, Rudolf M, Grund C, Kalthoff D, Mettenleiter T, Beer M, Hardert T: Protection and virus shedding of falcons vaccinated against highly pathogenic avian influenza A virus (H5N1). Emerg Infect Dis 2007, 13: 1667-1674.PubMed CentralView ArticlePubMedGoogle Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.