Wolcott RD, Gontcharova V, Sun Y, Zischakau A, Dowd SE: Bacterial diversity in surgical site infections: not just aerobic cocci any more. J Wound Care 2009, 18: 317-323.
Article
PubMed
CAS
Google Scholar
Bosi C, Davin-Regli A, Charrel R, Rocca B, Monnet D, Bollet C: Serratia marcescens nosocomial outbreak due to contamination of hexetidine solution. J Hosp Infect 1996, 33: 217-224. 10.1016/S0195-6701(96)90005-5
Article
PubMed
CAS
Google Scholar
Perez C, Fujii Y, Fauls M, Hummel J, Breitschwerdt E: Fatal aortic endocarditis associated with community-acquired Serratia marcescens infection in a dog. J Am Anim Hosp Assoc 2011, 47: 133-137. 10.5326/JAAHA-MS-5616
Article
PubMed
Google Scholar
Pinna A, Usai D, Sechi LA, Carta A, Zanetti S: Detection of virulence factors in Serratia strains isolated from contact lens-associated corneal ulcers. Acta Ophthalmol 2009, 89: 382-387.
Article
PubMed
Google Scholar
Dowzicky MJ, Park CH: Update on antimicrobial susceptibility rates among gram-negative and gram-positive organisms in the United States: results from the Tigecycline Evaluation and Surveillance Trial (TEST) 2005 to 2007. Clin Ther 2008, 30: 2040-2050. 10.1016/j.clinthera.2008.11.006
Article
PubMed
CAS
Google Scholar
Samonis G, Vouloumanou EK, Christofaki M, Dimopoulou D, Maraki S, Triantafyllou E, Kofteridis DP, Falagas ME: Serratia infections in a general hospital: characteristics and outcomes. Eur J Clin Microbiol Infect Dis 2011, 30: 653-660. 10.1007/s10096-010-1135-4
Article
PubMed
CAS
Google Scholar
Crivaro V, Bagattini M, Salza MF, Raimondi F, Rossano F, Triassi M, Zarrilli R: Risk factors for extended-spectrum beta-lactamase-producing Serratia marcescens and Klebsiella pneumoniae acquisition in a neonatal intensive care unit. J Hosp Infect 2007, 67: 135-141. 10.1016/j.jhin.2007.07.026
Article
PubMed
CAS
Google Scholar
Rizvi M, Fatima N, Shukla I, Malik A: Epidemiology of extended spectrum beta-lactamases in Serratia and Citrobacter species in North India. Indian J Pathol Microbiol 2010, 53: 193-194. 10.4103/0377-4929.59237
Article
PubMed
Google Scholar
Hamilton RL, Brown WJ: Bacteriophage typing of clinically isolated Serratia marcescens . Appl Microbiol 1972, 24: 899-906.
PubMed
CAS
PubMed Central
Google Scholar
Wassermann MM, Seligmann E: Serratia marcescens bacteriophages. J Bacteriol 1953, 66: 119-120.
PubMed
CAS
PubMed Central
Google Scholar
Petty NK, Foulds IJ, Pradel E, Ewbank JJ, Salmond GP: A generalized transducing phage (phiIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. Microbiology 2006, 152: 1701-1708. 10.1099/mic.0.28712-0
Article
PubMed
CAS
Google Scholar
Regue M, Fabregat C, Vinas M: A generalized transducing bacteriophage for Serratia marcescens . Res Microbiol 1991, 142: 23-27. 10.1016/0923-2508(91)90093-P
Article
PubMed
CAS
Google Scholar
Calendar R: Introduction. In Bacteriophages. Edited by: Calendar R. Interscience publishers Inc: New York; 2006:1-6.
Google Scholar
Casjens S, Winn-Stapley DA, Gilcrease EB, Morona R, Kuhlewein C, Chua JE, Manning PA, Inwood W, Clark AJ: The chromosome of Shigella flexneri bacteriophage Sf6: complete nucleotide sequence, genetic mosaicism, and DNA packaging. J Mol Biol 2004, 339: 379-394. 10.1016/j.jmb.2004.03.068
Article
PubMed
CAS
Google Scholar
Abedon ST: Disambiguating bacteriophage pseudolysogeny: an historical analysis of lysogeny, pseudolysogeny, and the phage carrier state. In Contemporary trends in bacteriophage research. Edited by: Adams HT. New York: Nova Science Publishers, Inc.; 2009:285-307.
Google Scholar
Friman VP, Hiltunen T, Jalasvuori M, Lindstedt C, Laanto E, Ormala AM, Laakso J, Mappes J, Bamford JK: High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs. PloS One 2011, 6: e17651. 10.1371/journal.pone.0017651
Article
PubMed
CAS
PubMed Central
Google Scholar
Matsushita K, Uchiyama J, Kato S, Ujihara T, Hoshiba H, Sugihara S, Muraoka A, Wakiguchi H, Matsuzaki S: Morphological and genetic analysis of three bacteriophages of Serratia marcescens isolated from environmental water. FEMS Microbiol Lett 2009, 291: 201-208. 10.1111/j.1574-6968.2008.01455.x
Article
PubMed
CAS
Google Scholar
Yu L, Wen Z, Yang W, Li N, Wang J, Lu J, Li J: Isolation and characterization of Serratia marcescens phage. Wei sheng wu xue bao 2008, 48: 498-502.
PubMed
CAS
Google Scholar
Matilla MA, Salmond GP: Complete Genome Sequence of Serratia plymuthica Bacteriophage ϕMAM1. J Virol 2012, 86: 13872-13873. 10.1128/JVI.02702-12
Article
PubMed
CAS
PubMed Central
Google Scholar
Adriaenssens EM, Ackermann HW, Anany H, Blasdel B, Connerton IF, Goulding D, Griffiths MW, Hooton SP, Kutter EM, Kropinski AM, Lee JH, Maes M, Pickard D, Ryu S, Sepehrizadeh Z, Shahrbabak SS, Toribio AL, Lavigne R: A suggested new bacteriophage genus: “Viunalikevirus”. Arch Virol 2012, 157: 2035-2046. 10.1007/s00705-012-1360-5
Article
PubMed
CAS
PubMed Central
Google Scholar
Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM: Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 2009, 9: 224. 10.1186/1471-2180-9-224
Article
PubMed
PubMed Central
Google Scholar
Pons FW: Untersuchung der DNS einiger Serratiastämme und deren Phagen. Biochemische Zeit 1966, 346: 26-40.
CAS
Google Scholar
Ackermann HW, Gershman M: Morphology of phages of a general Salmonella typing set. Res Virol 1992, 143: 303-310.
Article
PubMed
CAS
Google Scholar
Bradley DE: The morphology and physiology of bacteriophages as revealed by the electron microscope. J R Microsc Soc 1965, 84: 257.
PubMed
CAS
Google Scholar
Łoś M, Węgrzyn G: Pseudolysogeny. Adv Virus Res 2012, 82: 339-349.
Article
PubMed
Google Scholar
Miller RV, Day MJ: Contribution of lysogeny, pseudolysogeny and starvation to phage ecology. In Bacteriophage ecology: population growth, evolution, and impact of bacterial viruses. advances in molecular and cellular microbiology series. Edited by: Abedon ST. Cambridge, UK: Cambridge University Press; 2008:114-146.
Chapter
Google Scholar
Khemayan K, Pasharawipas T, Puiprom O, Sriurairatana S, Suthienkul O, Flegel TW: Unstable lysogeny and pseudolysogeny in Vibrio harveyi siphovirus-like phage 1. Appl Environ Microbiol 2006, 72: 1355-1363. 10.1128/AEM.72.2.1355-1363.2006
Article
PubMed
CAS
PubMed Central
Google Scholar
Sakaguchi Y, Hayashi T, Kurokawa K, Nakayama K, Oshima K, Fujinaga Y, Ohnishi M, Ohtsubo E, Hattori M, Oguma K: The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc Natl Acad Sci U S A 2005, 102: 17472-17477. 10.1073/pnas.0505503102
Article
PubMed
CAS
PubMed Central
Google Scholar
Pasharawipas T, Thaikua S, Sriurairatana S, Ruangpan L, Direkbusarakum S, Manopvisetcharean J, Flegel TW: Partial characterization of a novel bacteriophage of Vibrio harveyi isolated from shrimp culture ponds in Thailand. Virus Res 2005, 114: 63-69. 10.1016/j.virusres.2005.05.012
Article
PubMed
CAS
Google Scholar
Manderville RAM, Kropinski AM: Approaches to the compositional analysis of DNA. In Bacteriophages: methods and protocols, volume 2: molecular and applied aspects. Edited by: Clokie MRJ, Kropinski AM. Totowa, NJ: Humana Press; 2009:11-18.
Google Scholar
Casjens SR, Gilcrease EB: Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. In Bacteriophages: methods and protocols, volume 2: molecular and applied aspects. Edited by: Clokie MRJ, Kropinski AM. Totowa, NJ: Humana Press; 2009:91-111.
Google Scholar
Loessner MJ, Inman RB, Lauer P, Calendar R: Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol 2000, 35: 324-340. 10.1046/j.1365-2958.2000.01720.x
Article
PubMed
CAS
Google Scholar
Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS: PHAST: a fast phage search tool. Nucleic Acids Res 2011,39(Web Server issue):W347-W352.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ravin NV: N15: The linear plasmid prophage. In The Bacteriophages. Edited by: Calendar R. New York, NY: Oxford University Press; 2006:448-456.
Google Scholar
Hammerl JA, Klein I, Appel B, Hertwig S: Interplay between the temperate phages PY54 and N15, linear plasmid prophages with covalently closed ends. J Bacteriol 2007, 189: 8366-8370. 10.1128/JB.01066-07
Article
PubMed
CAS
PubMed Central
Google Scholar
Casjens SR, Gilcrease EB, Huang WM, Bunny KL, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW: The pKO2 linear plasmid prophage of Klebsiella oxytoca . J Bacteriol 2004, 186: 1818-1832. 10.1128/JB.186.6.1818-1832.2004
Article
PubMed
CAS
PubMed Central
Google Scholar
Mobberley JM, Authement RN, Segall AM, Paul JH: The temperate marine phage ΦHAP-1 of Halomonas aquamarina possesses a linear plasmid-like prophage genome. J Virol 2008, 82: 6618-6630. 10.1128/JVI.00140-08
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang X, Studier FW: Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection. J Mol Biol 2004, 340: 707-730. 10.1016/j.jmb.2004.05.006
Article
PubMed
CAS
Google Scholar
Kanamaru S, Kondabagil K, Rossmann MG, Rao VB: The functional domains of bacteriophage T4 terminase. J Biol Chem 2004, 279: 40795-40801. 10.1074/jbc.M403647200
Article
PubMed
CAS
Google Scholar
Bull JJ, Vimr ER, Molineux IJ: A tale of tails: Sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli . Virology 2010, 398: 79-86. 10.1016/j.virol.2009.11.040
Article
PubMed
CAS
PubMed Central
Google Scholar
De Lappe N, Doran G, O’Connor J, O’Hare C, Cormican M: Characterization of bacteriophages used in the Salmonella enterica serovar Enteritidis phage-typing Scheme. J Med Microbiol 2009, 58: 86-93. 10.1099/jmm.0.000034-0
Article
PubMed
CAS
Google Scholar
Turner D, Hezwani M, Nelson S, Salisbury V, Reynolds D: Characterization of the Salmonella bacteriophage vB_SenS-Ent1. J Gen Virol 2012, 93: 2046-2056. 10.1099/vir.0.043331-0
Article
PubMed
CAS
Google Scholar
Tiwari BR, Kim S, Kim J: Complete genomic sequence of Salmonella enterica serovar Enteritidis phage SE2. J Virol 2012, 86: 7712. 10.1128/JVI.00999-12
Article
PubMed
CAS
PubMed Central
Google Scholar
Kang HW, Kim JW, Jung TS, Woo GJ: wksl3, a New biocontrol agent for Salmonella enterica serovars enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol 2013, 79: 1956-1968. 10.1128/AEM.02793-12
Article
PubMed
CAS
PubMed Central
Google Scholar
Kim SH, Park JH, Lee BK, Kwon HJ, Shin JH, Kim J, Kim S: Complete genome sequence of Salmonella bacteriophage SS3e. J Virol 2012, 86: 10253-10254. 10.1128/JVI.01550-12
Article
PubMed
CAS
PubMed Central
Google Scholar
Salifu SP, Valero-Rello A, Campbell SA, Inglis NF, Scortti M, Foley S, Vázquez-Boland JA: Genome and proteome analysis of phage E3 infecting the soil-borne actinomycete Rhodococcus equi. Environ Microbiol Rep 2013, 5: 170-178. 10.1111/1758-2229.12028
Article
PubMed
CAS
Google Scholar
Fan H, Fan H, An X, Huang Y, Zhang Z, Mi Z, Tong Y: Complete genome sequence of IME11, a new N4-like bacteriophage. J Virol 2012, 86: 13861. 10.1128/JVI.02684-12
Article
PubMed
CAS
PubMed Central
Google Scholar
Jeon J, Kim JW, Yong D, Lee K, Chong Y: Complete genome sequence of the podoviral bacteriophage YMC/09/02/B1251 ABA BP, which causes the lysis of an OXA-23-producing carbapenem-resistant Acinetobacter baumannii isolate from a septic patient. J Virol 2012, 86: 12437-12438. 10.1128/JVI.02132-12
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee YD, Park JH: Complete genome of temperate phage ENT39118 from Cronobacter sakazakii . J Virol 2012, 86: 5400-5401. 10.1128/JVI.00345-12
Article
PubMed
CAS
PubMed Central
Google Scholar
Sambrook J, Russell DW: Molecular cloning - a laboratory manual, vol 1-3. 3rd edition. New York: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Adams MH: Methods of study of bacterial viruses. In Bacteriophages. New York: Interscience publishers, Inc; 1959:443-457.
Google Scholar
Lingohr EJ, Frost S, Johnson RP: Determination of bacteriophage genome size by pulsed-field gel electrophoresis. In Bacteriophages: methods and protocols, volume 2: molecular and applied aspects. Edited by: Clokie MRJ, Kropinski AM. Totowa, NJ: Humana Press; 2009:19-26.
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305: 567-580. 10.1006/jmbi.2000.4315
Article
PubMed
CAS
Google Scholar
Käll L, Krogh A, Sonnhammer EL: A combined transmembrane topology and signal peptide prediction method. J Mol Biol 2004, 338: 1027-1036. 10.1016/j.jmb.2004.03.016
Article
PubMed
Google Scholar
Hildebrand A, Remmert M, Biegert A, Söding J: Fast and accurate automatic structure prediction with HHpred. Proteins 2009, 77: 128-132. 10.1002/prot.22499
Article
PubMed
CAS
Google Scholar
Sonnhammer EL, von Heijne G, Krogh A: A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998, 6: 175-182.
PubMed
CAS
Google Scholar
Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 2003, 31: 3406-3415. 10.1093/nar/gkg595
Article
PubMed
CAS
PubMed Central
Google Scholar
Goa F, Zhang CT: Ori-finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics 2008, 9: 79. 10.1186/1471-2105-9-79
Article
Google Scholar
Conant GC, Wolfe KH: GenomeVX: simple web-based creation of editable circular chromosome maps. Bioinformatics 2008, 6: 861.
Article
Google Scholar