Open Access

Comparative analysis of complete nucleotide sequence of porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Thailand (US and EU genotypes)

  • Alongkorn Amonsin1Email author,
  • Roongtham Kedkovid1,
  • Suphasawatt Puranaveja1,
  • Piya Wongyanin1,
  • Sanipa Suradhat1 and
  • Roongroje Thanawongnuwech1
Virology Journal20096:143

DOI: 10.1186/1743-422X-6-143

Received: 10 August 2009

Accepted: 16 September 2009

Published: 16 September 2009

Abstract

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) is a causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS). In this study, the complete nucleotide sequences of the selected two Thai PRRSV isolates, EU (01CB1) and US (01NP1) genotypes were determined since both isolates are the Thai prototypes.

Results

01CB1 and 01NP1 contain 14,943 and 15,412 nucleotides, respectively. The viruses compose 2 untranslated regions (5' UTR and 3' UTR) and 8 open reading frames (ORFs) designated as ORF1a, ORF1b and ORF2-7. Phylogenetic analysis of full length of the viruses also showed that the 01CB1 and 01NP1 were grouped into the EU and US genotype, respectively. In order to determine the genetic variation and genetic relatedness among PRRSV isolates, the complete nucleotide sequences of PRRSV isolated in Thailand, 01CB1 and 01NP1 were compared with those of 2 EU strains (Lelystad, and EuroPRRSV), 6 US strains (MLV, VR2332, PA8, 16244B, SP and HUN4). Our results showed that the 01CB1 genome shares approximately 99.2% (Lelystad) and 95.2% (EuroPRRSV) nucleotide identity with EU field strains. While, the 01NP1 genome has 99.9% nucleotide identity with a live vaccine strain (MLV) and 99.5% and 98.5% nucleotide identity with 2 other US isolates, VR2332 and 16244B, respectively. In addition, ORF5 nucleotide sequences of 9 PRRS viruses recovered in Thailand during 2002-2008 were also included in this study. Phylogenetic analysis of ORF5 showed high similarity among EU and US genotypes of the recent Thai PRRS viruses (2007-2008 viruses) with 01CB1 and 01NP1.

Conclusion

Overall, the results suggested that the Thai EU isolate (01CB1) may evolve from the EU prototype, Lelystad virus, whereas the Thai US isolate (01NP1) may originate and evolve from the vaccine virus or its derivatives. Interestingly, the US-MLV vaccine was not available in the Thai market in 2001. The Vaccine-like virus might have persisted in the imported pigs or semen and later spread in the Thai swine industry. This report is the first report of complete nucleotide sequences of the Thai PRRS viruses both EU and US genotypes.

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) belonging to the genus Arterivirus in the family Arteriviridae in the order Nidovirales is a major swine virus causing economic losses in the swine industry worldwide including Thailand. Porcine reproductive and respiratory syndrome (PRRS) was first evident in the North American countries in 1987 and later in the European countries in 1990 [1]. In Thailand, PRRSV was first isolated in 1996 [2] but was serologically evident since 1989. Our previous report demonstrated that in Thailand both US and EU genotypes exist and sequential analysis of ORF5 gene confirmed genetic variation of Thai PRRS viruses [3].

Full-length genome sequences of PPRSV are essential and have been used for gene functional study, pathogenesis study, and evolutionary study as well as vaccine development of the virus. Full-length sequences of several PRRSV both US and EU genotypes are available in the public database. For example, the US prototype (VR2332) [4] and European prototype (LV) [5] are well characterized. The US genotype strains including the US field strains (16244B) [6], the US-MLV vaccine (MLV) [7], Canadian field strain (PA8) [8], Asian vaccine strain (SP) [9] and Asian field strain (BJ-4 and HUN4) [10] are available in the database. In addition, full-length sequences of EU genotype strain (EuroPRRSV) [11] was also identified. Phylogenetic analysis and full-length sequence comparison of the prototype viruses revealed that US and EU strains share approximately 63% nucleotide homology [6]. It has been known that ORF1a is relatively high variable, while ORF1b is more conserved among US and EU genotypes. Recent example is that the variation of ORF1a (multiple deletions in Nsp2 region) related to atypical virulence of PRRS in China [10, 12]. The structural protein encoding genes (ORFs2-7) are 20% (3 kb) in length of the genome. Out of 6 structural genes, ORF5 and ORF7 have been widely characterized and used to study the genetic diversity of the viruses in several reports [1317]

In this present study, we described the genetic comparison of full-length sequences of two Thai PRRSV prototypes of both EU (01CB1) and US (01N1) genotypes. ORF5 nucleotide sequences of 9 PRRS viruses recovered during 2002-2008 were also included in the analysis. Overall, 01CB1 closely related to the Lelystad virus (99.2%) and EuroPRRSV (95.2%). On the other hand, the 01NP1 genome was similar to the US-MLV, VR2332 and 16244B at 99.9%, 99.5% and 98.5% identity, respectively. The availability of complete genome sequences of Thai PRRSV is essential and useful for the evolution study of PRRSV as well as the development of infectious clones or vaccines in the future.

Results

Complete genome of Thai PRRS viruses

During the 2001 PRRS outbreaks in Thailand, the PRRS viruses, 01CB1 and 01NP1 were isolated from the intensive swine farming areas. Additional 9 PRRS viruses isolated in Thailand from 2002-2008 were also included in the study (Table 1). To study the relationship and genetic characteristics of those Thai viruses, two isolates, "01CB1 and 01NP1", considering the Thai prototypes were selected for full-length genome sequencing since the pathogenicity of both viruses were previously studies. The viruses were identified as the EU (01CB1) and the US (01NP1) strains based on ORF 5 analysis [3]. In this study, we have elucidated the full-length sequences of PRRSV of 01CB1 containing 14,943 bp (52.67%GC) and 01NP1 containing 15,412 bp (52.76%GC). The viruses had untranslated regions (5' UTR and 3' UTR) and 8 open reading frames (ORFs) designated as ORF1a, ORF1b and ORF2-7. The details of genome organization of PRRS viruses, 01CB1 and 01NP1, were shown in table 2.
Table 1

List of PRRSV analyzed in this study

Virus ID

Location

Year of isolation

Strain

GenBank accession number

01CB1

Chonburi

2001

EU

DQ864705*

01NP1

Nakhon Pathom

2001

US

DQ056373*

02SB3

Saraburi

2002

EU

FJ908074

08RB103

Ratchaburi

2008

EU

FJ908075

08NP144

Nakhon Pathom

2008

EU

FJ908076

07NP4

Nakhon Pathom

2007

US

FJ908077

08NP147

Nakhon Pathom

2008

US

FJ908078

08NP148

Nakhon Pathom

2008

US

FJ908079

08RB51

Ratchaburi

2008

US

FJ908080

08RB154

Ratchaburi

2008

US

FJ908081

08RB160

Ratchaburi

2008

US

FJ908082

* nucleotide sequences of full length viruses

Table 2

Genome organization of PRRS viruses, 01CB1 and 01NP1, in this study

ORFs

01CB1

01NP1

Protein*

 

Nucleotides

Amino acid

Nucleotides

Amino acid

 
 

Position

Size

Size

Position

Size

Size

 

5' UTR

1-144

144

-

1-189

189

-

-

ORF1a

145-7335

7191

2396

190-7701

7512

2503

Replicase polyprotein; Nsp1alpha, beta (Papain-like cysteine protease); Nsp2 (cystein protease); Nsp3 - 8

ORF1b

7317-11708

4392

1463

7680-12071

4392

1463

RNA dependent RNA polymerase (Nsp 9 - 12)

ORF2

11719-12468

750

249

12073-12843

771

256

GP2 envelop protein

ORF3

12327-13124

798

265

12696-13460

765

254

GP3 envelop protein

ORF4

12869-13420

552

183

13241-13777

537

178

GP4 envelop protein

ORF5

13417-14022

606

201

13788-14390

603

200

GP5 envelop protein

ORF6

14010-14531

522

173

14375-14899

525

174

Matrix protein

ORF7

14521-14907

387

128

14889-15260

372

123

Nucleocapsid protein

3'UTR

14908-14943

36**

-

15261-15412

152

-

-

*Protein functions were identified based on Blast-P results and Wootton et al., 2000

** Poly A tail of 01CB1 was not identified in this study

Phylogenetic analysis

Phylogenetic analysis of the viruses showed that 01CB1 and 01NP1 were grouped into the separated lineages represented by the EU (LV and EuroRRSV) and US (MLV, VR2332, 16244B, PA8, SP and HUN4) isolates (Fig. 1). The 01CB1 was the most closely related to the LV virus (EU prototype), while the 01NP1 was the most closely related to the US MLV strain and the US prototype (VR2332). In general, phylogenetic analysis of full length sequences of PRRSV indicated that the Thai viruses were of both US and EU origin and exhibited the highest sequence similarity to those of EU prototype (LV) and the US prototype (MLV), respectively (Table 3). Phylogenetic analysis of ORF5 sequences of recent Thai PRRSV (2002-2008) were also analyzed, the results also showed high similarity among EU and US genotypes of the recent Thai PRRS viruses (2007-2008 viruses) with 01CB1 and 01NP1 (Fig 2). In addition, all EU isolates from Thailand (01CB1, 02SB3, 08RB103, 08NP144) are clustered into the EU genotype - subtype 1, which is the common subtype for EU-PRRSV worldwide as well as the EU vaccine strains.
Table 3

Pair-wise sequence comparison of full-length nucleotide sequences of PRRSV from Thailand and those of EU and US strains

Pair-wise sequence comparison of PRRS viruses

(% nucleotide identity)*

 

01NP1

MLV

VR2332

PA8

16244B

SP

HUN4

01CB1

LV

EuroPRRSV

01NP1

100

99.9

99.5

99.3

98.5

93.2

89.1

59.1

59.1

59.2

MLV

 

100

99.7

99.4

98.6

93.2

89.2

59.1

59.1

59.2

VR2332

  

100

99.2

98.3

93.0

89.0

59.1

59.2

59.3

PA8

   

100

98.2

92.9

89.0

59.0

59.1

59.2

16244B

    

100

92.5

88.8

59.2

59.3

59.3

SP

     

100

88.3

59.1

59.1

59.1

HUN4

      

100

59.4

59.5

59.5

01CB1

       

100

99.2

95.2

LV

        

100

95.3

EuroPRRSV

         

100

* Sequence comparison of PRRSV in this study was based on ORF1-ORF7 sequences.

Figure 1

Phylogenetic relationship of PRRS viruses, full length genome Sequences. Whole genome sequences of ORF1-ORF7 were used for phylogenetic analysis using PAUP program applying NJ algorithm with distance setting of total character difference. Bootstrap analysis was conducted with 1000 replication.

Figure 2

Phylogenetic relationship of PRRS viruses, ORF 5 sequences. ORF5 sequences were used for phylogenetic analysis using MEGA program applying NJ algorithm with Kimura 2-parameter. Bootstrap analysis was conducted with 2000 replication.

Genetic analyses

Pair-wise sequence comparisons of full-length sequences of the Thai isolates are presented in table 3. The two Thai isolates were compared with eight representative PRRS viruses of both genotypes obtained from the GenBank database that had been completely sequenced. The 01CB1 displayed the highest percentage of nucleotide identity to the EU isolates (LV and EuroPRRSV), while the 01NP1 had high percentage of similarity to the US isolates (MLV, VR2332, 16244B, PA8, SP, HUN4) with more than 98% nucleotide identity. However, the percent homology between the two Thai isolates, 01CB1 and 01NP1, was 59.81%.

In this study, 5' UTR of 01NP1 and 01CB1 had 189 bp and 144 bp in length. 5'UTR of 01CB1 was almost identical to the 5'UTR of VR2332 (99.5%) and the US-MLV (98.6%) (data not shown), while 5' UTR of 01NP1 displayed profound nucleotide sequence identity (more than 90%) with the US isolates. Similar findings were also observed in 3' UTR that 01CB1 and 01NP1 shared high percentage of nucleotide identity of 3' UTR of the EU and US genotypes.

ORF1a and ORF1b of 01CB1 and 01NP1 encoded proteins of 2,396 and 1,463 and 2,503 and 1,463 amino acids, respectively. ORF1a and ORF1b of 01CB1 were similar to those of the EU strains (99.2% and 99.3%) (data not shown). Comparison of deduced amino acids revealed that ORF1a had more polymorphic sites than ORF1b proteins. Polymorphic sites in ORF1a of 01CB1 and 01NP1 were 125/2396 and 61/2503. On the other hand, polymorphic amino acids in ORF1b were 27/1463 (01CB1) and 16/1463 (01NP1). These findings indicated that ORF1a was continuously changing and evolving as previously described especially in the Nsp2 region [8]. In this study, deduced amino acids of the Nsp2 proteins of 01NP1 were compared to those of US strains (MLV, VR2332, PA8, 16244B, SP and HUN4) (Fig 3). Amino acid deletions were found at position 482 (1 aa) and 533-561 (28 aa) in Nsp2 of the Chinese isolate (HUN4) but not in other US strains. Thirty six amino acid insertions were also observed in the Asian vaccine strain (SP), but not found in 01NP1 Thai isolate.
Figure 3

Sequence alignment of NSP2 of PRRSV viruses (US strains). Deduced amino acids of NSP2 gene of 01NP1 were compared to those of US strains (MLV, VR2332, PA8, 16244B, SP and HUN4). No amino acid deletions position 482 and 533-561 were found in most US strain except HUN4 (solid blocks). While 36 amino acid insertions were observed in SP (Asian vaccine strain) (dotted block).

ORFs2-7 genes encoded structural proteins of the PRRSV including envelop protein (ORF2-5), matrix protein (ORF 6) and nucleocapsid protein (ORF 7). Structural genes of 01CB1 and 01NP1 were approximately 3 kb in size. In this study, ORF 2-7 of the two viruses were conserved (less polymorphic sites). ORF 2-7 of 01CB1 and 01NP1 were similar to ORF2-7 of the LV and the US-MLV viruses (>99.0% identity) (Data not shown). Out of 5 structural genes (ORFs2-7), ORF 7 was highly conserved in both EU and US strains, while ORF5 was less conserved among both strains. Deduced amino acids of ORF5 gene of 01NP1 and 01CB1 and additional 9 PRRSV (2002-2008) were compared to those of US strains (MLV, VR2332, PA8, 16244B, SP and HUN4) and EU strain (LV and EuroPRRSV) (Fig 4 and 5). The results showed that the US strains (01NP1) had 11 polymorphic sites comparing to US consensus and the EU strains (01CB1) had 13 polymorphic sites comparing to the EU consensus (Fig 4 and 5). Interestingly, polymorphic sites in ORF5 of EU strains were found more than those of US strains. Sequence distances of ORF5 among PRRS viruses are 82.0-99.5% (among US genotype) and 84.7-99.5% (among EU genotype). These findings indicated moderate genetic diversity among Thai PRRSV in both genotypes.
Figure 4

Sequence alignment of ORF5 of PRRSV viruses (US). Deduced amino acids of ORF5 gene of 01NP1 and 6 PRRSV were compared to those of US strains (MLV, VR2332, PA8, 16244B, SP and HUN4).

Figure 5

Sequence alignment of ORF5 of PRRSV viruses (EU). Deduced amino acids of ORF5 gene of 01CB1 and 3 PRRSV were compared to those of EU strains (LV and EuroPRRSV).

In summary, genetic analyses of untranslated region (5' UTR and 3' UTR) and ORF 1-7 showed that 01CB1 was mostly similar to the EU prototype, LV (98.5% -99.7%). The Thai US strain, 01NP1 was closely related to the US-MLV vaccine strain (99.4%-100%).

Discussion

In this study, we reported full-length sequences of the Thai PRRS viruses of both EU (01CB1) and US (01NP1) genotypes. The full-length size of the EU strain, 01CB1, is 14,943 bp, similar to the two EU strains (LV; 15,101 bp and EuroPRRSV; 15,047 bp) [5, 11]. On the other hand, 01NP1 isolate has 15,412 bp in size. The size of this virus is similar to the US strains (VR2332, 15,411 bp and 16244B, 15,411 bp) [4, 6], the US-MLV vaccine (MLV, 15,412 bp) [7], Canadian field strain (PA8, 15,411 bp) [8], Asian vaccine strain (SP, 15,520 bp) [9] and Asian field strain (BJ-4, 15,410 bp and HUN4, 15352 bp) [10].

Genome organization of the Thai PRRS viruses contained 8 open reading frames. Two non structural genes, ORF1a and ORF1b, composed 70% in size of the genome. ORF1a and ORF1b encoded replicase polyproteins, which subsequently cleaved to 13 subunits (Nsp1a/b-Nsp12). ORF2-7 were structural genes that encode envelop protein (ORF2-5), matrix protein (ORF 6) and nucleocapsid protein (ORF7) [8]. Most full-length sequences of PRRSV had identified of 8 ORFs in the genome, however some studies have reported additional ORF2 (ORF2a and ORF2b) encoding unknown protein function.

Comparison of full-length sequences of the Thai PRRS viruses (01CB1 and 01NP1) with other PRRS viruses from the European, north American and Asian countries revealed that 01CB1 virus was similar to the EU strains especially the EU prototype, Lelystad (99.2%). Unexpectedly, 01NP1 had nucleotide sequences similar to the US-MLV (99.9%) and the US-prototype (VR2332) (99.5%). Phylogenetic analysis showed that 01CB1 and 01NP1 were clustered into the EU and the US lineages, respectively. 01CB1 was closely related to the LV virus, the EU prototype whereas, 01NP1 was closely related to the US-MLV (vaccine strain) and VR2332 (US prototype). Our results indicated that the Thai EU strain evolved from the LV. The introduction of the Thai EU strain of PRRSV may possibly due to the importation of persistently infected pigs or semen. Interestingly, 01NP1 was closely related to the US-MLV vaccine strain. Since the US-MLV vaccine was not available in Thailand until 2005, the contaminated vaccine-like virus might have persisted in the imported pigs or semen at that time. Our previous report found that the Thai EU isolates were closely related to the Danish viruses and the Thai US isolates were closely related to the Canadian viruses [3]. Since the US-MLV has been found in the Danish pig population [18] at the same time of the first PRRSV report in Thailand [2]. 01NP1 might originate from persistently US-MLV infected imported pigs either from Canada or Denmark. Similarly, the evidence of the field strain (PA8) that originated and evolved from the US-MLV vaccine strain (RespPRRS) had been documented in Canada [8]. Unfortunately, full length nucleotide sequence of the Spanish vaccine virus (Amervac) was not available for analysis since only the Spanish vaccine was the only live vaccine available at that time. The analysis will rule out the possibility that the Thai EU strain may also evolve from imported Spanish vaccine strains in the 90s.

In this study, the most variable ORFs were ORF1a (Nsp2) and ORF5. Both ORF1a and ORF5 were previously reported as highly variable regions. ORF1a (Nsp2 subunit) can be used as genetic marker for monitoring the mutation or genetic changes as well as for differential diagnosis of PRRS viruses [9, 19, 20]. Recently, atypical PRRS outbreaks have been reported in China since 2006 causing severe economic losses in the Chinese swine industry. Genome analysis of the Chinese viruses revealed that the viruses contain 2 distinct amino acid deletions in the Nsp2 gene indicating highly virulent of PRRS viruses [10, 12]. The multiple deletions in this specific Nsp2 region reported in the Chinese isolates causes the so-called 'Swine high fever syndrome' [10]. The pathogenesis of turning virulence of the Chinese viruses is still unclear and needed to be elucidated. Fortunately, we did not see any deletion in our Thai isolates similar to the Chinese viruses.

Similar to other studies, the variation of ORF5 region can be applied for identification and differentiation of the PRRSV. In addition, ORF5 can also be used for the study of genetic diversity of the viruses [3, 17, 21, 22]. In this study, 9 additional PRRS viruses were analyzed in the ORF5 region. Phylogenetic analysis of ORF5 clearly separated US genotype and EU genotype, which both genotypes can be found circulating in Thailand (Fig 2). It has been known that the US genotype is more diverse than the EU genotype. However, in this study, all Thai EU-genotype isolates are more diverse and belonged to the EU genotype-Subtype 1, similar to some European isolates (The Netherlands, Denmark, Spain, Poland and Italy) but not the PRRSV from Eastern European which are belonged to EU genotype-Subtype 2, 3 and 4 (Belarus and Lithuania) [23]. Currently, both EU and US genotypes are still circulating in the Thai swine industry with predominantly the US genotype (data not shown). Interestingly, our results indicated that all Thai PRRS viruses in this study had evolved from the Thai PRRSV prototypes of both genotypes. No evidence of recent imported new PRRSV strains was found in this study possibly due to the Department of Livestock Development, Thailand do not allow the importation of PRRSV-positive animals.

Conclusion

In conclusion, our study provided full-length genome sequences of the Thai PRRS viruses of both genotypes. The genetic and cluster analysis of the Thai PRRSV of the EU genotype (01CB1) may evolve from the EU prototype, the Lelystad virus. On the other hand, the Thai PRRSV of the US genotype (01NP1) may originate and evolve from the US-MLV vaccine virus or its derivatives. It should be noted that ORF1a (Nsp2) and ORF5 contained highly variable regions and can be used as diagnostic markers for prevention and control of newly emerged PRRSV. This work highlights the significance of full-length sequences of PRRSV in Thailand for future studying of the genesis and evolution of the PRRS viruses.

Methods

PRRS viruses

The Thai EU isolate (01CB1) used in this study was isolated from the nursery pigs having PRDC problem in Chonburi province, the Eastern region of Thailand in 2001. The EU PRRSV caused reproductive failure in a 3,000 sow herd and later the respiratory disease with moderate morbidity and mortality in the nursery pigs. The Thai US isolate (01NP1) was isolated in Nakhon Pathom province located in the central region of Thailand in the same year from the nursery pigs in a 2,000 sow herd with more than 10% loss after weaning. Both farms are practicing a continuous-flow system and piglets are weaned weekly. The pathogenesis study of the 01CB1 and the 01NP1 virus was done and the 01CB1 was identified as a low virulence strain while the 01NP1 was identified as a high virulence strain. Based on ORF5 sequence analysis, 01CB1 and 01NP1 were characterized and grouped in the EU and the US genotypes respectively [3]. Additional 9 PRRS viruses isolated in Thailand from 2002-2008 were included in the study (Table 1). The viruses were later identified as EU genotype (n = 3) and US genotype (n = 6) based on ORF5 nucleotide sequencing and then include in the phylogenetic analysis.

Virus isolation

Virus isolation was done from the lung tissues as previously described [24]. The cell culture-adapted viruses were propagated in MARC-145 cells in minimum essential medium (MEM) (Hyclone, USA) with 5% fetal calf serum (FCS) (Hyclone, USA) for 3 passages. Immunoperoxidase monolayer assay (IPMA) using SDOW-17 was used to confirm the presence of PRRS virus [3]. The virus concentration of 103 TCID50/ml was used for viral RNA preparation in this study.

Viral RNA and cDNA preparation

RNA isolation using QIAamp RNA Mini Kit (Qiagen, Hilden, Germany) was done on the stock virus solution following the manufacture's instruction. In brief, 200 μl of virus-containing supernatant was mixed with 200 μl buffer AVL and incubated for 10 minutes. Then, 500 μl of ethanol was added to the mixture. The mixture was then transferred to QIAamp spin column and centrifuged at 8000 rpm for 2 min. The spin column was subsequently washed with 500 μl of buffer AW1 and AW2 and centrifuged at 8000-14000 rpm for 3 min. Finally, 50 μl of buffer AVE was added and centrifuged at 8000 rpm for 3 min to elute viral RNA. cDNA synthesis was then performed by incubating viral RNA with 0.5 μg Random primers (Promega, Madison, WI) at 70°C for 5 min and then 4°C for 5 min. The mixture was then added with 1× Improm-II reaction buffer (Promega), 0.5 mM dNTPs (Fermentus), 2.5 mM MgCl2 (Promega), 10 U of Rnasin Ribonuclease inhibitor (Promega) and 1 μl of Improm-II Reverse Transcriptase. The mixture was incubated in thermal cycler at 25°C for 5 min, 42°C for 60 min and 70°C for 15 min.

PRRSV genome sequencing

Oligonucleotide primers used in this study were designed based on sequence information of the EU and US prototypes, LV and VR2332, respectively. Additional primers were designed for gap closure to complete whole genome sequences of the viruses. Sequence information of each oilgonucleotide primers are provided in additional file 1. PCR amplification of viral RNA was performed as previously described [3]. In brief, 25 μl of PCR reaction was prepared by adding 2 μl of cDNA, 1× Eppendrof Master Mix (Eppendrof, Hamburg, Germany) and 0.8 μM of oligonucleotide primer. The PCR reaction mixture was incubated in thermal cycler with condition: 95°C for 10 min and 35 cycle of denaturation (95°C for 45 Sec), annealing (55°C for 45 Sec), extension (72°C for 90 Sec), and final extension of 72°C for 15 min. The PCR products were then analyzed in 2% gel electrophoresis (FMC Bioproducts, Rockland, ME). The PCR products were then purified using the Perfectprep Gel Cleanup Kit (Eppendorf,) for further DNA sequencing. The DNA sequencing reaction was performed, using a commercially available kit (Big Dye Terminator V.3.0 Cycle Sequencing Ready Reaction; Foster City, CA), at a final volume of 20 μl, containing 8 μl of dye terminator and 12 μl of specific sequencing primer at the concentration of 3.2 pmol. The sequencing products were analyzed with the ABI-Prism 310 Genetic Analyzer (Perkin Elmer, Norwalk, CT). ORF5 nucleotide sequencing was also performed using the oligonucleotides specific for ORF5 and then subjected for DNA sequencing. At least 4 coverages of viral nucleotide were performed in the study, to ensure the quality of PRRS genome sequencing.

Analysis of nucleotide and amino acid changes in PRRS viruses

Genome assembly was conducted by using a computer program SeqMan (DNASTAR, Madison, WI). In this study, the full-length genome sequencing of 2 viruses (01CB1 and 01NP1) was conducted to reach at least 4 time coverages of each virus. In addition, the chromatograms of nucleotide sequences of each PCR products were rechecked and validated to ensure the type and position of nucleotide and amino acid changes in PRRS genome. The sequence alignment and amino acid comparison were done by computer program, MegAlign (DNASTAR). The phylogenetic analysis was performed using the PAUP version 4.0 software (Sinauer Associates, Sunderland, MA) applying NJ algorithm with distance setting of total character difference and the MEGA3 software applying NJ algorithm with Kimura 2- parameter. Bootstrap analysis was conducted with 1000 replications. The nucleotide sequences of the Thai PRRS viruses, 01CB1 and 01NP1 were submitted to the Genbank database under the accession numbers: [01CB1: DQ864705 and 01NP1: DQ056373]. The ORF5 nucleotide sequences of 9 viruses were also in the Genbank database under the accession numbers: [FJ908074-FJ908082].

Declarations

Acknowledgements

This work was supported by the grant from The Thailand Research Fund MRG4780063 to Dr. Amonsin.

Authors’ Affiliations

(1)
Faculty of Veterinary Science, Chulalongkorn University

References

  1. Gilbert SA, Larochelle R, Magar R, Cho HJ, Deregt D: Typing of porcine reproductive and respiratory syndrome viruses by a multiplex PCR assay. J Clin Microbiol 1997, 35: 264-267.PubMed CentralPubMedGoogle Scholar
  2. Damrongwatanapokin S, Arsayuth K, Kongkrong C, Parchariyanon S, Pinyochon W, Tantaswasdi U: Serological studies and isolation of porcine reproductive and resiratory syndrome (PRRS) virus in Thailand. J Thai Vet Med Assoc 1996, 47: 19-30.Google Scholar
  3. Thanawongnuwech R, Amonsin A, Tatsanakit A, Damrongwatanapokin S: Genetics and geographical variation of porcine reproductive and respiratory syndrome virus (PRRSV) in Thailand. Vet Microbiol 2004, 101: 9-21. 10.1016/j.vetmic.2004.03.005View ArticlePubMedGoogle Scholar
  4. Nelsen CJ, Murtaugh MP, Faaberg KS: Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 1999, 73: 270-280.PubMed CentralPubMedGoogle Scholar
  5. Meulenberg JJ, Petersen den Besten A, de Kluyver E, van Nieuwstadt A, Wensvoort G, Moormann RJ: Molecular characterization of Lelystad virus. Vet Microbiol 1997, 55: 197-202. 10.1016/S0378-1135(96)01335-1View ArticlePubMedGoogle Scholar
  6. Allende R, Lewis TL, Lu Z, Rock DL, Kutish GF, Ali A, Doster AR, Osorio FA: North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J Gen Virol 1999,80(Pt 2):307-315.View ArticlePubMedGoogle Scholar
  7. Opriessnig T, Halbur PG, Yoon KJ, Pogranichniy RM, Harmon KM, Evans R, Key KF, Pallares FJ, Thomas P, Meng XJ: Comparison of molecular and biological characteristics of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (ingelvac PRRS MLV), the parent strain of the vaccine (ATCC VR2332), ATCC VR2385, and two recent field isolates of PRRSV. J Virol 2002, 76: 11837-11844. 10.1128/JVI.76.23.11837-11844.2002PubMed CentralView ArticlePubMedGoogle Scholar
  8. Wootton S, Yoo D, Rogan D: Full-length sequence of a Canadian porcine reproductive and respiratory syndrome virus (PRRSV) isolate. Arch Virol 2000, 145: 2297-2323. 10.1007/s007050070022View ArticlePubMedGoogle Scholar
  9. Key KF, Haqshenas G, Guenette DK, Swenson SL, Toth TE, Meng XJ: Genetic variation and phylogenetic analyses of the ORF5 gene of acute porcine reproductive and respiratory syndrome virus isolates. Vet Microbiol 2001, 83: 249-263. 10.1016/S0378-1135(01)00427-8View ArticlePubMedGoogle Scholar
  10. Zhou YJ, Hao XF, Tian ZJ, Tong GZ, Yoo D, An TQ, Zhou T, Li GX, Qiu HJ, Wei TC, Yuan XF: Highly virulent porcine reproductive and respiratory syndrome virus emerged in China. Transbound Emerg Dis 2008, 55: 152-164. 10.1111/j.1865-1682.2008.01020.xView ArticlePubMedGoogle Scholar
  11. Ropp SL, Wees CE, Fang Y, Nelson EA, Rossow KD, Bien M, Arndt B, Preszler S, Steen P, Christopher-Hennings J, et al.: Characterization of emerging European-like porcine reproductive and respiratory syndrome virus isolates in the United States. J Virol 2004, 78: 3684-3703. 10.1128/JVI.78.7.3684-3703.2004PubMed CentralView ArticlePubMedGoogle Scholar
  12. Tong GZ, Zhou YJ, Hao XF, Tian ZJ, An TQ, Qiu HJ: Highly pathogenic porcine reproductive and respiratory syndrome, China. Emerg Infect Dis 2007, 13: 1434-1436.PubMed CentralView ArticlePubMedGoogle Scholar
  13. Fang Y, Schneider P, Zhang WP, Faaberg KS, Nelson EA, Rowland RR: Diversity and evolution of a newly emerged North American Type 1 porcine arterivirus: analysis of isolates collected between 1999 and 2004. Arch Virol 2007, 152: 1009-1017. 10.1007/s00705-007-0936-yView ArticlePubMedGoogle Scholar
  14. Li Y, Wang X, Jiang P, Wang X, Chen W, Wang X, Wang K: Genetic variation analysis of porcine reproductive and respiratory syndrome virus isolated in China from 2002 to 2007 based on ORF5. Vet Microbiol 2009, 138: 150-155. 10.1016/j.vetmic.2009.03.001View ArticlePubMedGoogle Scholar
  15. Mateu E, Diaz I, Darwich L, Casal J, Martin M, Pujols J: Evolution of ORF5 of Spanish porcine reproductive and respiratory syndrome virus strains from 1991 to 2005. Virus Res 2006, 115: 198-206. 10.1016/j.virusres.2005.09.008View ArticlePubMedGoogle Scholar
  16. Forsberg R, Storgaard T, Nielsen HS, Oleksiewicz MB, Cordioli P, Sala G, Hein J, Botner A: The genetic diversity of European type PRRSV is similar to that of the North American type but is geographically skewed within Europe. Virology 2002, 299: 38-47. 10.1006/viro.2002.1450View ArticlePubMedGoogle Scholar
  17. Stadejek T, Stankevicius A, Storgaard T, Oleksiewicz MB, Belak S, Drew TW, Pejsak Z: Identification of radically different variants of porcine reproductive and respiratory syndrome virus in Eastern Europe: towards a common ancestor for European and American viruses. J Gen Virol 2002, 83: 1861-1873.View ArticlePubMedGoogle Scholar
  18. Madsen KG, Hansen CM, Madsen ES, Strandbygaard B, Botner A, Sorensen KJ: Sequence analysis of porcine reproductive and respiratory syndrome virus of the American type collected from Danish swine herds. Arch Virol 1998, 143: 1683-1700. 10.1007/s007050050409View ArticlePubMedGoogle Scholar
  19. Grebennikova TV, Clouser DF, Vorwald AC, Musienko MI, Mengeling WL, Lager KM, Wesley RD, Biketov SF, Zaberezhny AD, Aliper TI, Nepoklonov EA: Genomic characterization of virulent, attenuated, and revertant passages of a North American porcine reproductive and respiratory syndrome virus strain. Virology 2004, 321: 383-390. 10.1016/j.virol.2004.01.001View ArticlePubMedGoogle Scholar
  20. Yang SX, Kwang J, Laegreid W: Comparative sequence analysis of open reading frames 2 to 7 of the modified live vaccine virus and other North American isolates of the porcine reproductive and respiratory syndrome virus. Arch Virol 1998, 143: 601-612. 10.1007/s007050050316View ArticlePubMedGoogle Scholar
  21. Goldberg TL, Hahn EC, Weigel RM, Scherba G: Genetic, geographical and temporal variation of porcine reproductive and respiratory syndrome virus in Illinois. J Gen Virol 2000, 81: 171-179.View ArticlePubMedGoogle Scholar
  22. Mateu E, Martin M, Vidal D: Genetic diversity and phylogenetic analysis of glycoprotein 5 of European-type porcine reproductive and respiratory virus strains in Spain. J Gen Virol 2003, 84: 529-534. 10.1099/vir.0.18478-0View ArticlePubMedGoogle Scholar
  23. Stadejek T, Oleksiewicz MB, Potapchuk D, Podgorska K: Porcine reproductive and respiratory syndrome virus strains of exceptional diversity in eastern Europe support the definition of new genetic subtypes. J Gen Virol 2006, 87: 1835-1841. 10.1099/vir.0.81782-0View ArticlePubMedGoogle Scholar
  24. Thanawongnuwech R, Halbur PG, Ackermann MR, Thacker EL, Royer RL: Effects of low (modified-live virus vaccine) and high (VR-2385)-virulence strains of porcine reproductive and respiratory syndrome virus on pulmonary clearance of copper particles in pigs. Vet Pathol 1998, 35: 398-406.View ArticlePubMedGoogle Scholar

Copyright

© Amonsin et al; licensee BioMed Central Ltd. 2009

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement