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Abstract 

Background:  Betanodaviruses, members of the Nodaviridae family, are the causative agents of viral nervous necrosis 
in fish, resulting in great economic losses worldwide.

Methods:  In this study, we isolated a virus strain named seahorse nervous necrosis virus (SHNNV) from cultured 
big-belly seahorses Hippocampus abdominalis in Xiamen city, Fujian Province, China. Virus isolation, PCR detection, 
phylogenetic analysis, qRT-PCR, fluorescence in situ hybridization and histology were used for virus identification and 
analysis of virus histopathology. Furthermore, an artificial infection experiment was conducted for virulence testing.

Results:  Brain and eye tissue homogenates of diseased big-belly seahorses were inoculated onto a grouper spleen 
(GS) cell monolayer at 28 °C. Tissue homogenates induced obvious cytopathic effects in GS cells. PCR and sequenc-
ing analyses revealed that the virus belonged to Betanodavirus and shared high sequence identity with red-spotted 
grouper nervous necrosis virus isolates. qRT-PCR and fluorescence in situ hybridization revealed that SHNNV mainly 
attacked the brain and eye. Histopathological examination revealed that the virus led to cytoplasmic vacuolation in 
the brain and retinal tissues. Infection experiments confirmed that SHNNV was highly infectious, causing massive 
death in big-belly seahorses.

Conclusion:  A novel seahorse betanodavirus from the big-belly seahorse cultured in China was discovered. This find-
ing will contribute to the development of efficient strategies for disease management in aquaculture.
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Background
Seahorses are a group of aquatic animals that have been 
used for many years for their medicinal and ornamen-
tal properties. Annually, tens of millions of seahorses 
are collected from the wild and enter trade globally, 
mostly used for medicinal purposes [1–4]. Being scarce 

in population, seahorses are listed in the International 
Union for Conservation of Nature (IUCN) Red List of 
Threatened Species and the Convention on International 
Trade in Endangered Species of Wild Fauna and Flora 
(CITES) [5, 6]. The big-belly seahorse (Hippocampus 
abdominalis) is one of the largest seahorse species, and 
is mostly distributed in the temperate coastal regions of 
New Zealand and south-eastern Australia [6]. Owing to 
its high market value, the big-belly seahorse has become 
one of the major mariculture species in China in recent 
years, although full of challenges. One of the major 
threats to seahorse cultivation is frequent outbreaks of 
diseases, causing heavy economic losses.
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Nervous necrosis viruses (NNVs) are non-enveloped 
positive-sense RNA viruses classified in the family 
Nodaviridae, which contains two genera: betanodavi-
ruses, which predominantly infect fish, and alphano-
daviruses, which predominantly infect insects [7]. 
Betanodaviruses-infected fish show abnormal swim-
ming behaviour, such as spiraling and darting, due to 
vacuolation and necrosis of the central nervous sys-
tem [8], furthermore, NNVs result in high mortality in 
hatchery-reared larvae and juveniles of a wide range of 
marine fish species in Asia, Europe, Australia, North 
America and North Africa [9–16]. The genome of NNV, 
packed into a diameter of 25–30 nm icosahedral virion, 
is comprised of two positive-sense RNA molecules: 
RNA1 encodes the RNA-dependent RNA polymer-
ase (RdRp) required for viral genome replication, and 
RNA2 encodes the capsid protein (Cp), which is the 
single major structural protein of NNV and determines 
the host specificity [9, 17, 18]. According to the Inter-
national Committee on Taxonomy of Viruses, NNVs 
are classified into four genotypes: striped jack NNV 
(SJNNV), tiger puffer NNV (TPNNV), barfin floun-
der NNV (BFNNV), and red-spotted grouper NNV 
(RGNNV) [18]. Highly contagious and virulent, NNV 
of all genotypes has been identified in more than 40 
species of marine and freshwater fish, either asymp-
tomatic or causing neural disease [9, 19]. However, no 
NNV infected seahorses have been recorded.

Recently, we have observed a disease causing spiral 
swim pattern, abdominal distension and high lethality 
in farmed seahorses in Fujian, China, without parasitic 
infection, bacterial infection, mycotic infection, exter-
nal or organ injuries, or water pollution. It was highly 
suspected that the seahorses were infected with viruses, 
and we analysed the pathogens in this work. Viruses 
that affected seahorses are scarcely studied, partially 
because of the restricted seahorse-aquaculture scale, 
and the lack of research on this species. Our study is 
the first identification of a virus inducing VNN in sea-
horses, and we nominate it seahorse NNV (SHNNV). 
We report the isolation, characterization and patho-
genicity of a SHNNV isolate from the big-belly sea-
horse. Although many studies of NNVs have been 
conducted, nowadays, there are still limited methods 
of preventing NNVs’ invasion of fishes, for the small 
scale application of effective drugs or vaccines. The 
isolation and identification  of SHNNV will contribute 
to the research on both pathogenesis and therapeutic 
methods of NNV. In summary, the present study pro-
vides a basic resource for the subsequent investigation 
of big-belly seahorse and SHNNV interactions, as well 
as a new species applicable for NNV studies.

Methods
Sample collection
In this study, diseased big-belly seahorses (aver-
age weight of 0.33 ± 0.12  g, average body length of 
7.21 ± 1.03 cm) were obtained from a fish farm in Xia-
men city, Fujian Province, China. The fish showed 
abnormal swimming behaviour, and the cumulative 
mortality rate was approximately 40% in one month. 
Eye, brain, rhynchodaeum, liver, intestine, brood 
pouch, bone, muscle, gonad, heart, kidney, gill, skin, 
and gallbladder tissues of each fish were analysed indi-
vidually for the presence of NNVs.

Viral isolation
Eye and brain tissue samples of NNV-positive seahorses 
were homogenized in 5  mL of L15 medium (Gibco, 
USA) without foetal bovine serum (FBS). Then, the tis-
sue homogenates were filtered through a 0.22 μm filter 
membrane, inoculated on grouper spleen (GS) cells, and 
cultured in L15 medium supplemented with 10% FBS 
(Gibco, USA). The same volume of L15 was added to the 
mock infected group. Inoculated cells were cultured at 
28  °C and monitored regularly for the development of 
cytopathic effects (CPEs). The virus isolate was propa-
gated in GS cells until the cell monolayer was destroyed. 
The cell culture supernatant was then recovered, cen-
trifuged at 1,000 × g for 10  min at 4  °C and stored 
at − 80 °C until use. Viral titres were determined by the 
50% tissue culture infective dose (TCID50) method.

Identification of the isolated viruses by PCR
Total RNA was extracted from the supernatants of CPE-
positive cultures using an RNA extraction kit (Takara, 
Japan) and reverse transcribed using a Transcription 
First Strand cDNA Synthesis Kit (Roche, Switzerland) 
according to the manufacturer’s instructions. For the 
detection of SHNNV, PCR was performed using Blend 
Taq DNA polymerase (Toyobo, Japan) with the following 
conditions: denaturation at 94 °C for 2 min, followed by 
35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 
90 s. The reactions were completed with a final extension 
of 10  min at 72  °C. The PCR product was analysed by 
electrophoresis on a 1.5% agarose gel in TAE buffer con-
taining GoldView I nucleic acid stain (Solarbio, China). 
The primers used are listed in Table  1. PCR products 
were cloned into PMD-18 T vectors (Takara, Japan) and 
sequenced by a sequencing company (BGI, China).

Sequence alignment analysis
The putative CP amino acid sequences were predicted 
using BioEdit software [20]. Phylogenetic analysis based 
on the protein sequence was performed with MEGA 6.0 
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using the neighbour joining method with resampling 
with 1000 bootstrap replicates [21].

Tissue distribution of viruses
To investigate which tissues the virus mainly infects, total 
RNA was extracted from different tissues of diseased big-
belly seahorses, including the eye, brain, rhynchodaeum, 
liver, intestines, brood pouch, bone,muscle, gonad, heart, 
kidney, gill, skin, and gallbladder. Transcripts of cp gene 
from different tissues were examined by quantitative real-
time PCR (qRT-PCR). The qRT-PCR conditions were as 
follows: denaturation at 94  °C for 1 min, followed by 40 
cycles of 94 °C for 15 s, 55 °C for 15 s, and 72 °C for 60 s. 
Standard amplification curves for different genes were 
generated via serial dilutions of plasmid constructs. The 
concentration of the template in the samples was deter-
mined by relating the Cq value to the standard curve. The 
β-actin gene was used as an internal control. The primers 
used in this study are listed in Table 1.

Fluorescence in situ hybridization (FISH)
Sense and antisense digoxigenin (DIG)-labelled ribo-
probes were synthesized from the open reading frame 
sequence of the cp gene using a DIG RNA Labelling Kit 
(Roche Diagnostics, Germany).

The procedures for RNA FISH followed those of 
Ragoczy et al. [22], Ho et al. [23], and Beliveau et al. [24], 
with modifications. Briefly, NNV-positive seahorses were 
fixed in buffered 4% paraformaldehyde for 24 h. The sam-
ples were then dehydrated with a series of graded ethanol 
solutions (70–100%), cleared in xylene and embedded in 
paraffin. Ten-micron sections were cut for FISH. Prior to 
hybridization, the slides were washed with phosphate-
buffered saline (PBS), sequentially dehydrated in 70%, 
90%, and 100% ethanol, and equilibrated in 10% forma-
mide / 2 × saline sodium citrate(SSC), pH 7.0. A mix-
ture of the primary sense and antisense probes and the 
secondary probes was hybridized to the cells in 10% 
formamide / 10% dextran sulfate / 2 × SSC / 5  mmol/L 
ribonucleotide vanadate complex / 0.05% bovine serum 
albumin / 1 μg/μL E. coli tRNA and hybridized overnight 
at 55 °C in a humidified chamber. Slides were sequentially 
washed in 10% formamide / 2 × SSC, pH 7.0, followed 

by 2 × SSC at 37 °C and then mounted with Fluoroshield 
with DAPI (Sigma, USA). Fluorescence signals from 
FISH were imaged with a Zeiss confocal microscope 
(Germany).

Brain and eye histology
The brains and eyes were removed from diseased and 
healthy big-belly seahorses, fixed in Bouin’s solution 
overnight at room temperature, dehydrated, and then 
embedded in paraffin wax. All tissue blocks were sec-
tioned at a thickness of 5 μm and stained with hematoxy-
lin and eosin for subsequent analysis.

Infection experiment
To investigate the pathogenicity of SHNNV, juvenile 
big-belly seahorses were experimentally infected with 
SHNNV. Juvenile big-belly seahorses (average body 
length of 7.89 ± 0.40  cm) were purchased from a fish 
farm and maintained at 21 ± 1 °C in tanks under a natural 
photoperiod. Juvenile big-belly seahorses were divided 
into two groups with 50 fish per group. A viral suspen-
sion was diluted tenfold, and each fish in the infection 
group received 30  μL diluted virus by intraperitoneal 
injection. The control group was injected with 30 μL PBS 
per seahorse. Seahorses were monitored twice daily for 
clinical signs of pathology and mortality.

Statistical analysis
The results were analysed statistically using repeated meas-
urements of variance analysis with SPSS software 25 [25].

Results
Isolation and identification
Brain and eye tissue homogenates of diseased big-belly 
seahorses were inoculated onto a GS cell monolayer at 
28 °C. Significant CPEs were observed at 24 h in GS cells 
infected with virus (Fig. 1B). No CPE was observed in the 
control group (Fig.  1A). The infected cells were NNV-
positive by PCR assays, and the PCR products of the 
estimated size (1073 bp) were identified, with clear elec-
trophoretic bands (Fig. 2). The 1017 bp full-length gene 
encoded 338 amino acids (Additional file  1: Sequence 
S1 and S2). A phylogenetic tree was constructed by the 

Table 1  Primers used in this study

Primers used in gene cloning

cp-F:CAC​CGC​TTT​GCA​ATC​ACA​ATG​ cp-R:GTC​ATC​AAC​GAT​ACG​CAC​TAGG​

Primers used in RT-qPCR

q-cp-F:GAT​ACG​CTG​TTG​AAA​CAC​TGG​ q-cp-F:GGA​ACG​CTC​AGT​CGA​ACA​CTC​

q-β-actin-F: ACC​ATC​GGC​AAT​GAG​AGG​TT q-β-actin-R: ACA​TCT​GCT​GGA​AGG​TGG​AC
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neighbour-joining method with1000 bootstrap replicates 
based on a multiple alignment of the gene sequences, 
which were predicted using the standard genetic code. 
The phylogenetic tree showed that the virus clustered 
with NNV and was most closely related to RGNNV; 
therefore, the isolated virus strain was designated as 
SHNNV (Fig. 3).

Tissues mainly infected with SHNNV
To investigate the target tissues of SHNNV, we exam-
ined the transcription level of cp mRNA in various tis-
sues from diseased big-belly seahorses by qRT-PCR. As 
shown in Fig. 4, its transcriptional level was significantly 
increased in the brain and eye. The virus was also found 
in brood pouch, skin, muscle and other organs, but only 
with extremely low viral load. We further performed 
FISH of the cp mRNA. From the Fig. 5, we found the pos-
itive signals were mainly detected in the brain and retina 
which consistent with qRT-PCR result (Fig.  5). These 
results indicate that SHNNV mainly infects the brain and 
eye of big-belly seahorses.

Histopathology of SHNNV infection
To investigate the pathology of big-belly seahorse brain 
and retinal tissue caused by SHNNV infection, we per-
formed histological analysis on brain and retinal tissues 
of healthy and diseased seahorses. Compared to the 
healthy ones, SHNNV-positive seahorses showed cyto-
plasmic vacuolation in the brain (Fig. 6A, B) and retinal 
tissues (Fig. 6C, D).

SHNNV isolate pathogenicity tests
To evaluate the pathogenic potential of SHNNV in fish 
hosts, big-belly seahorses were infected with the virus by 
intraperitoneal injection. In the infection group, the sea-
horses began to die from the second day, and the survi-
vors tended to stabilize over the ten days. The death rate 
was 92%. In the control group, only two seahorses died, 
with a mortality rate of 4% (Fig. 7).

Discussion
In the present study, a virus strain was isolated from 
diseased big-belly seahorses in Xiamen city. By employ-
ing a series of biochemical and biophysical methods, we 
first identified that the causative agent was an SHNNV 
strain belonging to betanodavirus. The history of VNN 
researches can be traced back to the mid-1980s. In 1985, 
a new disease with a mortality rate greater than 90% 
occurred in Australia, Japan, Southeast Asia, and the Car-
ibbean in almost simultaneous outbreaks in the breeding 
of a variety of young marine fish [10, 13, 26, 27]. In China, 
the first NNV isolation was reported in reared stone 
red-spotted grouper in 2001 [28]. Although some cases 
of similar symptoms have been discovered in numerous 
marine fish infected with NVV, no formal reports on sea-
horse nervous necrosis have been recorded. Thus, the 

Fig. 1  Detection of SHNNV by cell culture and PCR. GS cells were incubated with brain and eye homogenates of SHNNV-positive big-belly 
seahorses. CPEs were observed in the infected group (B). Uninfected GS cells were used as controls (A). The white arrow indicates the CPE

Fig. 2  Agarose gel electrophoresis of PCR products from infected 
GS cells using specific primers for the SHNNV cp gene; lane 1 ~ 3: PCR 
products from infected GS cells
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first observation of a disease causing swimming in spi-
rals or rotations, lethargy and anorexia in seahorses has 
not been reminiscent of NNV at the beginning, whereas 
further environmental and pathogenic analysis indi-
cated virus infection. The typical symptom of VNN and 

the afterwards demonstrated vacuolation in the brain 
and eye confirmed that the causative agent belonged to 
betanodavirus. The pathogenic test showed acute viral 
infection and an extremely high case fatality rate of 92% 
compared to the control group (4%).

In previous studies, researchers commonly identified 
and classified NNV by analysing the sequences of RNA2 
or the cp genes from various viral isolates [7, 14, 29, 30]. 
Cp gene encodes the capsid protein, which contains a 
conservative shell domain (S-domain), a hypervariable 
protrusion domain (P-domain) and an N-terminal arm 
recruiting genomic RNA [31]. It has been indicated that 
CP is the major determinant of immunoactivity and host 
specificity [17, 32], and partially determines the thermo-
tolerance of NNV [33, 34]. Here we identified the virus 
by analysing the full length of cp mRNA amplified by 
primers that designed according to a known NNV isolate. 
Phylogenetic analysis indicated that SHNNV was most 
closely related to RGNNV genotype.

Previous studies have shown that RGNNV mainly 
destroys the brain and eyes of the infected fish, and the 
prominent pathological features are vacuolation of the 
brain and retina, resulting in massive losses to the popu-
lation of grouper and other marine fishes [8, 35, 36]. It 

Fig. 3  Phylogenetic analysis of SHNNV isolates. Phylogenetic trees based on amino acid sequences and the gene coding for CP. The numbers at 
the end of the virus species names denote the GenBank accession number. The phylogenetic tree was constructed using the neighbour‐joining 
methods with 1,000 non‐parametric boot‐strap replicates in MEGA 6.0
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is reported that RGNNV also detected in gills, intes-
tine, stomach, spleen, liver, kidney, pyloric gland, skel-
etal muscle, blood cells and fin [8, 9, 36]. In the present 
study, according to the results of the tissue distribution 
of the virus, brain and eye histology and FISH, we found 
that SHNNV mainly destroyed the big-belly seahorse 
brain and eye and caused vacuolation of the brain and 
retina. These results were consistent with the pathology 
of NNVs. We also detected a low expression level of viral 
mRNA in rhynchodaeum, liver, intestine, brood pouch, 
bone, muscle, gonad, heart, kidney, gill, skin, and gall-
bladder tissues.

In our unpublished study, we found that SHNNV was 
sensitive to water temperature. Many studies have dis-
covered a temperature-dependent effect of NNV infec-
tion, with distinct optimum growth temperature in four 
genotypes. Unlike the other three genotypes that repli-
cate in cold water, the optimum temperature for RGNNV 
replication was 25–28  °C, corresponding to the water 
temperature of VNN outbreaks [34, 37–41]. The tem-
perature range for RGNNV genotype, however, has not 
yet been definitely verified, while temperature that too 

high or too low was unsuitable for host cells to grow [42]. 
In our study, the seahorses were raised at 21 °C, and our 
further research showed that SHNNV could replicate at 
13  °C, the temperature was far below the temperature 
optima, and below the lowest experimental temperature 
record [33, 42, 43]. The seahorse Hippocampus abdom-
inalis can be cultured as low as 8  °C, and compared to 
other fish, it is small, rapid-propagative and easy to cul-
ture in experimental conditions, giving it an advantage 
for NNV researches.

A research showed a distinct difference between the 
RNA2 sequences of RGNNV isolates in fish held at high 
temperature and low temperature [44]. However, it is 
also reported that RNA1, encoding RdRp, protein B1 
and B2, is the key contributing factor for the response 
to temperature [33], Ciulli et  al. also considered that 
RNA1 rather than RNA 2 plays a more important part 
in thermotolerance of NNV, although RNA2 was found 
to determine temperature sensitivity as well [34, 43]. 
There is evidence that the RNA1 evolved rapidly than 
RNA2, indicating a strong selection to respond to 
various temperature ranges [15, 45, 46]. In our study, 

Fig. 5  Main tissues attacked by SHNNV. Red staining indicates the Cp position. The middle row (1) shows high magnification of boxed area 1 in the 
top row (panorama). The bottom row (2) shows high magnification of boxed area 2 in the top row (panorama). SHNNV was mainly localized in the 
brain and eye. The white arrow points SHNNV
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Fig. 6  Micrographs of H&E-stained brain and eye tissues of big-belly seahorses naturally infected with SHNNV. A H&E staining of normal big-belly 
seahorse brain tissue. B H&E staining of infected big-belly seahorse brain tissue. Many cytoplasmic vacuolations (black arrows) were found in the 
brain tissue. C H&E staining of normal big-belly seahorse eye tissue. D H&E staining of infected big-belly seahorse eye tissue. Many cytoplasmic 
vacuolations (black arrows) were found in the ganglion cell layer

Fig. 7  Cumulative mortality (%) of juvenile big-belly seahorses challenged with SHNNV. The cumulative mortality was determined from 1 to 
15 days post infection
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we only analysed the cp gene but not the complete 
sequence of RNA1 and RNA2. The next plan of ana-
lysing the genetic divergence of between SHNNV and 
other RGNNV isolates will be supplement to the stud-
ies of the thermal adaptability of NNV.

Conclusions
In conclusion, we isolated and characterized SHNNV 
from reared big-belly seahorses in China. The present 
isolate was closely related to known RGNNV isolates. 
It can infect GS cells and induce obvious CPE. We also 
found that SHNNV mainly destructs the big-belly sea-
horse brain and eye and causes vacuolation of the brain 
and retina. The infection experiment revealed that 
SHNNV was virulent to juvenile big-belly seahorses. 
Further studies will focus on the infection mechanism 
and preventive strategies for SHNNV.
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