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Abstract 

Background:  Human cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including 
CD34+ hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this 
infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, 
at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between 
these phases of infection are incompletely understood, though a large body of literature support a role for viral-medi-
ated manipulation of host cell signaling.

Main body:  To establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors 
to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus 
entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes 
upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this 
signaling is again altered to allow for transactivation of viral lytic genes.

Conclusions:  HCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are 
finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident 
that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type spe-
cific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubt-
edly provide novel targets for therapeutic intervention.
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Background
HCMV latency is maintained in cells of the myeloid 
compartment, specifically peripheral blood monocytes 
and CD34+ hematopoietic progenitor cells (HPCs) 
[1–6]. During the initial stages of a primary infection, 
HCMV lytically infects and amplifies within epithelial 
cells, ultimately leading to infection of peripheral blood 

monocytes [7, 8]. HCMV infection of monocytes results 
in a unique form of latency, which has been termed a 
quiescent infection by the Yurochko Lab [9–13]. The 
establishment of this quiescent infection is characterized 
by the lack of viral lytic replication and limited expres-
sion of latency-associated viral gene products [3, 4, 14]. 
However, the maintenance phase of this distinct form of 
latency is limited, as the viral entry process triggers sign-
aling events that extend monocyte survival beyond their 
normal 48-h lifespan, enhance migration, and stimulate 
differentiation into replication permissive macrophages 
[9, 10, 15–19], which together allows monocytes to serve 
as vehicles of viral dissemination to peripheral tissue. 
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Once infected monocytes extravasate into tissue and dif-
ferentiate into macrophages, viral replication and spread 
can occur [14, 20, 21]. Importantly, spread to and infec-
tion of the bone marrow leads to the establishment of a 
latent reservoir within CD34+ HPCs [2, 5, 22]. In con-
trast to a quiescent infection of monocytes during a pri-
mary infection, long-term maintenance occurs in latently 
infected CD34+ HPCs and requires an external activation 
stimulus for reactivation into lytic replication [23]. In 
contrast, the early signaling events following infection of 
monocytes drives their differentiation into macrophages 
and spontaneous viral reactivation at 2–3  weeks post-
infection. [13], an important aspect distinguishing a 
quiescent infection from more canonical definitions of 
latency in CD34+ HPCs. Following reactivation signal(s), 
latently infected CD34+ HPCs preferentially differentiate 
down the myeloid lineage into latently infected mono-
cytes and ultimately replication permissive macrophages, 
leading to the reseeding of virus in peripheral organs 
sites [24, 25]. Similarly, quiescently infected monocytes 
can also be stimulated to reactivate prior to 2–3  weeks 
with an external reactivation signal (e.g. ref. [26]). Thus, 
the early HCMV-induced events contributing to the 
establishment, maintenance, and reactivation of quies-
cently infected monocytes and latently infected CD34+ 
HPCs are likely very similar. Thus, studies on quiescently 
infected monocytes will also likely provide insight into 
the mechanisms of latency in CD34 + HPCs and vice 
versa. The establishment of a persistent infection in both 
monocytes and CD34+ HPCs is critical for viral dissemi-
nation and life-long persistence within an infected host 
(Fig.  1). Herein, we review the host cell signaling path-
ways HCMV coopts to make the cellular environment 
more amenable to latency establishment, as well as main-
tenance and reactivation.

Main text
Establishment
Establishment of latency
The establishment of latent infection requires the restric-
tion of viral gene expression from the major immediate 
early promoter (MIEP) to abrogate HCMV lytic replica-
tion. The MIEP controls the expression of viral immedi-
ate early (IE) genes, which are responsible for initiation 
of the viral lytic replication program [27, 28]. Restriction 
of the MIEP is accomplished by the repression of acti-
vating transcription factors, binding of repressive tran-
scription factors, and by the chromatin rearrangement 
leading to inaccessibility of the promoter (reviewed in 
[29]). Although literature is limited on the mechanisms 
specifically attributed to the establishment of latency, 
several studies hint at the modulation of cellular signal-
ing pathways during the viral entry process as essential. 

This section will focus on how cellular receptors and viral 
G protein-coupled receptors (vGPCRs) modulate cellular 
signaling pathways during the viral entry process in order 
to promote the establishment of HCMV latency (Fig. 2).

HCMV entry and signaling in myeloid cells
Entry of HCMV is a complicated process that allows 
for efficient entry of the virus but also initiates signal-
ing events that alter the cellular environment. In the 
absence of viral gene expression during the establishment 
of latency, these signaling events are posited to be criti-
cal for latency establishment. Initially, the HCMV glyco-
proteins gM/gN bind heparin sulfate proteoglycans in a 
reversible, low-affinity interaction [30], which is rapidly 
replaced with irreversible high affinity binding between 
viral glycoproteins to cellular receptors (reviewed in 
[31]). The viral glycoprotein gH is found in three com-
plexes within the virion; the dimeric gH/gL, the trimeric 
gH/gL/gO, or the pentameric gH/gL/UL128-131 com-
plex [32–34]. For the infection of monocytes, the pen-
tameric complex is required [35, 36]. gH directly binds 
integrin β1, while UL128-131 binds β3 integrins [19, 37]. 
Additionally, the viral glycoprotein gB binds epidermal 
growth factor receptor (EGFR) on both monocytes and 
CD34+ HPCs [19, 38–41]. EGFR is a major determinant 
of HCMV tropism for the myeloid compartment, as 
monocytes are the only human leukocyte that expresses 
EGFR, which is also expressed in myeloid cell lines used 
for HCMV latency models, such as THP-1 cells [39, 42, 
43]. EGFR is an important receptor for efficient infec-
tion and establishment of latency in CD34+ HPCs [40]. 
Additional cellular receptors for HCMV have been iden-
tified, including platelet derived growth factor receptor 
alpha (PDGFR-α), neuropilin-2 (NRP-2), thymocyte dif-
ferentiation antigen-1 (THY-1), olfactory receptor fam-
ily 14I1 (OR14I1), CD147, and CD151 [44–48]. Many of 
these receptors, such as PDGFR-α and OR14I1, are not 
expressed on cells of the myeloid lineage, and thus their 
involvement in the establishment of latency is unlikely 
[39, 48–51]. Despite the known expression of receptors 
such as NRP-2, THY-1, CD147, and CD151 on myeloid 
cells, the contribution of these HCMV entry receptors to 
infection of monocytes or CD34+ HPCs have yet to be 
thoroughly examined [52–55].

In addition to the triggering of signaling pathways by 
viral glycoprotein interactions with cellular receptors, 
HCMV encodes four vGPCRs, including US28, US27, 
UL33, and UL78 that can modulate cellular signaling 
pathways. While all four vGPCRs are de novo synthe-
sized during lytic infection, only US28, UL33, and UL78 
are expressed during latency (reviewed in [56]). Each 
of the HCMV-encoded GPCRs is incorporated into the 
mature viral particle [57–61], thereby facilitating their 
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delivery into the host cell upon viral fusion. Impor-
tantly, virion-delivered US28 is sufficient to attenuate 
early IE gene expression [57, 62]. However, HCMV fails 
to maintain long-term latency in the absence of de novo 
synthesized US28, indicating virion delivered US28 is 
sufficient for the establishment, but not maintenance, 
of HCMV latency [62]. While UL78 and UL33 are also 
incorporated into the virion, the role for these vGPCRs 
during the establishment of latency in myeloid cells 
has yet to be explored, although UL33 functions dur-
ing reactivation, as detailed below [63]. Consequently, 
we will focus on the potential role of US28 in regulating 

glycoprotein induced cellular signaling pathways to 
promote the establishment of HCMV latency.

PI3K/Akt
EGFR is a well-studied viral entry receptor that con-
tributes to the establishment of efficient infection and 
latency of both monocytes and CD34+ HPCs [19, 38, 41, 
64]. During HCMV entry, viral glycoprotein gB binds 
EGFR, triggering the activation of downstream PI3K/Akt 
signaling [19, 38–40]. HCMV activation of EGFR induces 
a non-canonical PI3K/Akt signaling pathway, via activa-
tion of Sh2 domain containing inositol 5-phospatase 1 

Fig. 1  The myeloid compartment and HCMV latency. During a primary infection, HCMV is spread through bodily fluids to oral epithelial cells, 
which are permissive for lytic infection. HCMV then infects peripheral blood monocytes, resulting in a unique form of latency known as a quiescent 
infection. Cellular signaling induced by viral entry drives the survival, extravasation, and monocyte-to-macrophage differentiation of infected 
monocytes. Viral spread to peripheral organs leads to lytic infection of tissue endothelial and epithelial cells. Additionally, infected monocytes 
can travel to the bone marrow and spread HCMV to CD34+ HPCs, which are the long-term latency reservoir. Following an external reactivation 
signal, latently infected HPCs preferentially differentiate down the myeloid lineage into latently infected monocytes, and ultimately into replication 
permissive macrophages. Overall, the myeloid compartment is essential to viral life cycle and allows for the life-long persistence of HCMV
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(SHIP1) [16, 19], which results in the preferential phos-
phorylation of Akt at serine 473. In contrast, canoni-
cal growth factor induced PI3K/Akt signaling within 
monocytes stimulates the dual phosphorylation of Akt 
at both serine 473 and threonine 308 [16]. Akt activated 
by HCMV infection leads to the upregulation of a unique 
subset of anti-apoptotic proteins, including myeloid 
cell leukemia-1 (Mcl-1) protein, heat shock protein 27 
(HSP27), and X-linked inhibitor of apoptosis (XIAP), 
necessary for the survival of infected monocytes [9, 15, 
17, 18]. Although the upregulation of these survival fac-
tors is critical for allowing the establishment of latency 
within naturally short-lived monocytes, how the non-
canonical EGFR/PI3K/Akt signaling induced by HCMV 
directly contributes to the repression of MIEP is not 
entirely clear. In CD34+ HPCs, Kim et  al. showed inhi-
bition of EGFR following genome nuclear translocation 
increases IE gene expression while attenuating expres-
sion of the latency maintenance protein, UL138 [40]. 
Chronic EGFR and PI3K signaling is also necessary to 
maintain latency as inhibition of the pathway stimulates 
viral reactivation, suggesting EGFR/PI3K/Akt signaling 

may directly regulate MIEP activity through modula-
tion of activating and repressive transcription factors. In 
support, the EGFR/PI3K/Akt cascade directly regulates 
the activities of several transcription factors. Alterna-
tively, early EGFR induced signaling events regulate viral 
genome trafficking within endosomes in both mono-
cytes and CD34+ HPCs [40, 65]. The viral tegument 
protein pp71 mediates the removal of promyelocytic 
leukemia nuclear body (PML-NB) proteins, including 
Daxx and histone deacetylases (HDACs), from the MIEP 
to allow transcription initiation [66–68]. However, Lee 
and Kalejta showed pp71 is sequestered to endosomes 
in TB40/E-latently infected CD34+ HPCs, thereby pre-
venting pp71 translocation to the nucleus [69], possibly 
rendering pp71 unable to degrade PML-NB proteins dur-
ing latency establishment. Similarly, Saffert and Kalejta 
showed pp71 is restricted from the nucleus in AD169-
infected N-Tera2 or THP-1 cells [67], two in vitro model 
cell types to study HCMV latency. Using these same cell 
systems and virus strain, HDAC inhibitor treatment or 
siRNA-mediated knockdown of Daxx resulted in IE gene 
expression [67]. However, subsequent reports from the 

Fig. 2  Regulation of receptor signaling induced by viral glycoproteins is required for HCMV latency establishment. During HCMV entry in myeloid 
cells, glycoprotein complexes engage cellular receptors, including EGFR, integrins, and TLR2, stimulating a complex network of signaling pathways 
that generates an environment necessary for the establishment of HCMV latency within the myeloid compartment. However, many of the same 
signaling pathways also promote MIEP activity, and thus must be “fine-tuned” to ensure the MIEP remains inactive. Evidence indicates that viral 
factors carried by the incoming virion, such as US28, actively regulate virus-mediated cellular pathways to promote the establishment of latency
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Sinclair [70] and Stamminger [71] groups, who employed 
embryonal carcinoma NT2D1 cells or THP-1 monocytic 
cells, respectively, revealed a different phenotype. Daxx 
knockdown in NT2D1 cells did not impact IE gene tran-
scription following infection with the Toledo strain [70], 
and similarly, knockdown of PML, Daxx, or Sp100 failed 
to initiate IE gene expression in TB40/E-infected THP-1 
cells [71]. These data suggest the underlying mechanisms 
indeed may prove distinct, based on viral strain, clinical 
versus lab-adapted strain, and/or cell type used in the 
study. Nonetheless, it is intriguing to speculate that the 
EGFR driven PI3K/Akt control of endosomal trafficking 
may contribute to latency establishment by sequestration 
of pp71 or other viral proteins. Regardless of the mech-
anism of action, these data suggest a direct role for the 
EGFR/PI3K/Akt pathway in the early suppression of the 
MIEP and the establishment of latency. Although GCPRs 
are known alter the PI3K/Akt cascade, the role of viral 
GCPRs in modulating glycoprotein-induced EGFR/PI3K/
Akt signaling to promote latency establishment within 
HCMV-infected monocytes and CD34+ HPCs remains 
to be elucidated and an important avenue of research.

MAPK
Mitogen activated protein kinases (MAPKs), includ-
ing c-Jun N-terminal kinases (JNK) 1/2/3, extracellu-
lar signal-regulated protein kinases (ERK) 1/2, and p38, 
promote transcription from the MIEP. MAPK signaling 
pathways activate the Activator Protein-1 (AP-1) tran-
scription factor, comprised of c-fos and c-jun, that  bind 
to  the MIEP to initiate transcription [72]. ERK1/2 sign-
aling mediates cyclic AMP response element binding 
protein (CREB)-dependent activation of the MIEP [73]. 
In addition to activating transcription factors, derepres-
sion of the MIEP by inhibition of transcriptional repres-
sors plays an equally important role during reactivation 
and IE gene expression. The MIEP associates with het-
erochromatin protein 1 (HP-1), a chromosomal protein 
implicated in gene silencing, in latently infected mono-
cytes and CD34+ HPCs [74–76]. However, the MIEP 
and HP1 association is lost during HCMV reactivation. 
Mechanistically, Dupont et  al. demonstrated that ERK 
stimulates the activities of mitogen and stress-activated 
kinases 1 and 2 (MSKs), which recognize and subse-
quently phosphorylate CREB to promote transcription 
and phosphorylation  at serine 10 of histone H3, result-
ing in the de-stabilization of histones with HP1 during 
IL-6-mediated reactivation within dendritic cells (DCs) 
[77]. Finally, the MIEP and subsequent viral replication 
are also activated in a p38-dependent manner [78], fur-
ther revealing the importance of MAPK activity to MIEP 
activation. Despite the essential role of MAPKs in pro-
moting IE gene expression, which we discuss in more 

detail below, MAPKs are rapidly activated by viral entry 
into monocytes and CD34+ HPCs without initiating 
transcription from the MIEP. HCMV gB triggers ERK/
MAPK to promote the expression of Mcl-1 and the sub-
sequent survival of infected monocytes and CD34+ HPCs 
[79]. Additionally, and as detailed below, EGFR signals 
through MEK/ERK to activate the early growth response 
1 (EGR-1) transcription factor, which drives the expres-
sion of the viral latency maintenance protein UL138 
[80]. Rapid secretion of IL-1β from HCMV-infected 
monocytes triggers p38 MAPK signaling that promotes 
a cellular environment conducive for latency [81]. These 
studies highlight the critical importance of MAPK sign-
aling in promoting a cellular environment supportive of 
latency, despite also functioning in stimulating IE gene 
expression. Thus, the question remains as to how the 
activation of MAPKs are able to promote the establish-
ment of latency. As discussed in more detail below, US28 
attenuates ERK phosphorylation when expressed in iso-
lation in THP-1 cells [82]. Accordingly, US28 reduces 
the expression and phosphorylation of c-fos [62]. Simi-
larly, infection with a US28 deficient virus increased 
AP-1 binding to the MIE enhancer/promoter [62] and 
IE gene expression in monocytes [62, 82]. Interestingly, 
c-jun is also downregulated in latently infected CD34+ 
HPCs and Kasumi-3 cells following HCMV infection, 
albeit in a US28-independent manner [62, 83]. However, 
it remains unclear if virion delivered US28 plays a role in 
regulating glycoprotein-activated MAPKs. It is intrigu-
ing to hypothesize that MAPKs are activated upon entry 
through glycoprotein/receptor interactions, which is then 
subsequently countered by US28. However, it is impor-
tant to note that MAPKs are not completely attenuated 
by US28; rather US28 acts as a rheostat that fine-tunes 
the activity of this signaling pathway. Therefore, there 
may be a threshold level of activation that is important 
for the establishment of latency, but is not sufficient to 
initiate MIEP-driven transcription.

Src
Integrins are a family of heterodimeric receptors com-
posed of a single α and β chain. There are 24 α and 9 
β integrin chains that can form 25 individual recep-
tors expressed to different levels depending on cell type 
(reviewed in [84]). Each combination of α and β chain 
not only has distinct binding properties, but also exhibits 
different downstream signaling characteristics. HCMV 
utilizes the integrin diversity to mediate entry into dif-
ferent cell types and to initiate distinct cell-type specific 
signaling. During entry into fibroblasts, HCMV engages 
only the α2β1, α6β1 [85], or αvβ3 [86] integrin heterodi-
mer via the gH/gL/gO trimer, which stimulates tran-
sient Src signaling. In contrast, the pentameric complex 
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simultaneously binds both β1 and β3 integrin containing 
heterodimers to stimulate a chronic but low-level activa-
tion of Src [87]. Importantly, the trimeric complex has no 
effect on Src activity during entry into monocytes, sug-
gesting that Src-mediated signaling specifically initiated 
from the pentameric complex is critical to the establish-
ment of infection [37]. During lytic infection of fibro-
blasts, there is also evidence that gB binds β1 integrins 
through a disintegrin domain binding [88]. However, the 
contribution of this interaction to the induction of Src 
signaling remains unexplored. Importantly, we recently 
reported gB directly interacts EGFR, but not with β1 
integrins, in infected monocytes [19]. In monocytes, 
pentamer-induced Src signaling is required for increased 
cellular motility as well as proper endocytosis and traf-
ficking of the virion [37, 41, 87, 89]. However, whether 
Src signaling regulates the MIEP in monocytes or CD34+ 
HPCs is unclear. Recently, Src family kinases (SFKs) were 
implicated in the regulation of chromatin structure at the 
MIEP. As described in detail below, the upregulation of 
SFKs, Src and hematopoietic cell kinase (Hck), during 
latency recruit the monocytic leukemia zinc finger pro-
tein (MOZ) histone acetyltransferase leading to chroma-
tin rearrangement and initiation of transcription from 
the MIEP [77]. These data suggest that glycoprotein-
mediated activation of Src signaling during viral entry 
must be restricted to a certain extent to allow for the cel-
lular changes necessary for the establishment of latency 
while also suppressing the MIEP. In support of this, 
expression of US28 in THP-1 cells, a model myeloid cell 
line, results in the downregulation of Src gene expres-
sion [62]. It is important to point out that Krishna et al. 
showed THP-1 cells transduced with a constitutively 
expressed US28 construct increase Src phosphorylation 
in a phosphokinase study, though these data were not 
subsequently confirmed in this study [82]. However, sup-
porting this work, Aslam et al. showed that Src phospho-
rylation was upregulated in the presence of US28 [90]. It 
is unclear from this work, however, which Src phospho-
site was evaluated, which is critical, as Ser416 phosphoryl-
ation renders Src active, while phosphorylation at Ser527 
is a negative regulatory site, associated with Src inactiv-
ity (reviewed in [91]). Whether virion-delivered US28 
represses early Src signaling to promote the establish-
ment of latency remains to be elucidated, though this is 
an attractive hypothesis.

NF‑κB pathway
Nuclear factor-kappa B (NF-κB) signaling is crucial for 
many aspects of HCMV biology [92], but the role it has 
in the establishment of latency is unclear. Adding to the 
complexity of the regulation of this pathway, HCMV 
encodes both agonists and antagonists of NF-κB. As a 

transcription factor, NF-κB binds to the MIEP to drive IE 
gene expression [93, 94], and during lytic infection, virus 
binding and entry activates NF-κB signaling and expres-
sion of the MIEP [34, 95]. Interestingly, upon monocyte 
infection, NF-κB is robustly activated by viral glyco-
protein and cellular receptor interactions in a Toll-like 
receptor-2 (TLR-2) dependent manner to promote the 
induction of a distinct inflammatory phenotype in mono-
cytes [39, 96, 97]. The NF-κB-mediated phenotype stimu-
lates the expression of an unusual milieu of inflammatory 
and anti-inflammatory cytokines and chemokines likely 
important for driving extravasation of HCMV-infected 
monocytes in tissue. However, the question still remains 
as to why activation of the NF-κB pathway during infec-
tion of undifferentiated myeloid cells does not lead to 
the expression of IE genes, as it does during lytic infec-
tion. One possibility is that NF-κB-driven cellular gene 
expression is functional, but other regulated cofactors 
not active in undifferentiated myeloid cells are required 
to stimulate IE expression. Krishna and colleagues have 
demonstrated US28 regulates NF-κB nuclear localiza-
tion during latency. A US28 signaling deficient mutant 
increased nuclear localization of NF-κB, suggesting US28 
attenuates the NF-κB signaling pathway by an unknown 
mechanism [82]. Additionally, functional viral micro-
RNAs (miRNAs), including those known to regulate 
NF-κB [92], are delivered to the host cell by the infecting 
virion [98]. These data suggest a potential model whereby 
HCMV stimulates NF-κB activity via glycoprotein-cellu-
lar receptor interactions, but limits its activity through 
US28 and miRNAs, in order to allow for the expression 
of NF-κB responsive cellular genes without initiation of 
transcription from the MIEP.

Maintenance and reactivation
Once the virus establishes latency, the virus must now 
devise ways to maintain this phase of infection. This pro-
cess is undoubtedly multifaceted, but it is clear HCMV 
has co-evolved with its host, usurping host cell networks 
to its own benefit. An “easy target” for the virus is cel-
lular signaling, as this is one of the prime means to alter 
the cellular milieu. Indeed, HCMV has devised biologi-
cal mechanisms to coopt host cell signaling to maintain 
viral latency and trigger reactivation into the lytic cycle 
(Fig. 3).

The UL133‑138 locus
Work from a variety of groups have revealed that the 
UL133-138 locus is quite important to the regulation 
of latency and reactivation (reviewed in [99]). UL138 is 
required for the establishment of latency, and in fact, 
abrogation of this open reading frame (ORF) results 
in an infection that favors lytic replication, leading to 
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increased virion production [100–102]. More recently, 
Buehler et  al. showed UL138 regulates EGFR signal-
ing, which downstream, upregulates PI3K/Akt signal-
ing [80, 103]. Pharmacological inhibition of PI3K/Akt 
favors reactivation, though this phenotype is most sig-
nificant when combined with reactivation stimulating 
cytokines, suggesting other factors regulate this path-
way [80]. These data also highlight that viral manipu-
lation of host cell signaling is likely not as simple as a 
direct on/off state, but instead reflects a mechanism 
that is more fine-tuned. In fact, UL138 actually regu-
lates its own expression during HPC latent infection, 
which it accomplishes through the upregulation of the 
EGFR-regulated transcription factor, EGR-1. This host 
protein binds the viral genome, thereby driving UL138 
transcription in HPCs, as well as fibroblasts [80], in 
turn creating a feedback loop regulating UL138-medi-
ated events. Supporting the role of this feedback loop 
towards latency, disruption of the EGR-1 binding site 
upstream of UL138 in the viral genome results in the 
inability for the virus to establish/maintain latency in 
HPCs [80].

The importance of the UL133-138 locus does not end 
with viral latency. While UL138 helps maintain latency, 
UL135 is critical for efficient reactivation. When given 
the proper reactivation cues, UL135 counters UL138-
mediated functions by targeting EGFR [80]. Indeed, 
disruption of the UL135 ORF results in a virus that 
fails to efficiently reactivate in CD34+ HPCs [104]. To 
ensure EGFR signaling and its downstream effectors are 
appropriately regulated, HCMV additionally encodes 
an miRNA, cmv-miR-US22, which targets EGR1 [105]. 
UL135’s role during reactivation does not end with 
countering UL138’s functions. UL135 interacts with 
host adapter proteins, Abelson-interactor (Abi)-1 and 
Cbl-interaction protein (CIN) 85/ CD2 associated pro-
tein (CD2AP), which in turn regulate EGFR on the cell 
surface. Hence, in the absence of UL135 and its interac-
tions with these host proteins, EGFR is increased on the 
cell surface of HPCs, thereby amplifying signaling and 
favoring latency. In line with this, inhibiting EGFR or its 
downstream pathways leads to reactivation when cou-
pled with reactivation stimuli and rescues the reactiva-
tion defect observed for UL135 mutant viral infections 

Fig. 3  Modulation of signaling pathways during latency maintenance. Multiple signaling pathways are modulated by viral factors to support 
latency maintenance. Cellular receptors like EGFR, BMPR2, and TGFβR are usurped by HCMV to mediate downstream cellular pathways, including 
MAPK and TGFβ. HCMV also encodes its own factors, such as the viral GPCR, US28, which regulates several cellular signaling cascades. Additionally, 
these host and viral receptors modulate downstream transcription factor activity. The cumulative effect of this collective regulation is to alter the 
cellular environment to support latency maintenance and prevent expression from the MIE enhancer/promoter. Conversely, when provided the 
proper external cues, HCMV again alters host cell signaling, thereby making the cell more amenable to viral reactivation. Cellular factors are shown 
in blue, and viral factors are shown in red. Pathways activated during latency are shown in solid lines, and processes activated during reactivation 
and suppressed during latency are shown in dotted lines
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[80, 103]. Collectively, both UL135 and cmv-miR-US22 
antagonize UL138-mediated EGFR regulation, thereby 
creating a cellular environment more amenable to reac-
tivation. These data also illuminate the critical nature of 
EGFR signaling during latency, for which the virus has 
devised several means to regulate this pathway.

Manipulation of host cell signaling impacts MIE enhancer/
promoter activity
A key step in establishing and maintaining HCMV 
latent infection is silencing of the MIE locus, which is 
likely initiated by chromatin remodeling (reviewed in 
[29]). The MIE enhancer/promoter is thought of as the 
“lytic switch”, acting like what may more accurately be 
described as a rheostat to skew the infection towards one 
that is latent versus one that is lytic (reviewed in [29]). 
Long regarded as a silencing factor of the MIE enhancer/
promoter [106, 107], Poole and colleagues recently con-
firmed the requirement for yin yang 1 (YY1) transcrip-
tion factor binding for maintaining latency [108]. Perhaps 
unsurprisingly, HCMV regulates YY1 by manipulating 
host cell signaling. Host-encoded transmembrane serine/
threonine kinase, bone morphogenetic protein receptor 
2 (BMPR2) signaling induces SMAD6, a SMAD family 
member that negatively regulates BMP and transform-
ing growth factor β (TGFβ) signaling (reviewed in [109]). 
In the context of latent infection, SMAD6 upregulation 
restricts the activity of TGFβ receptor (TGFβR) [108]. 
This is critical, as latently infected induced pluripotent 
stem cells (iPSCs) or CD34+ HPCs display a significant 
upregulation of TGFβ [108, 110, 111], mediated at least 
in part by cmv-miR-US5-2 attenuation of NGFI-A bind-
ing protein 1 (NAB1) [112]. Since NAB1 is a transcrip-
tional repressor of EGR-1 [113, 114], this represents an 
additional mechanism by which HCMV ensures EGR-1 
transcription and subsequent TGFβ production. Addi-
tionally, cmv-miR-UL22A also targets TGFβ signaling, 
and in fact deletion of the pre-miR-UL22A sequence 
within the viral genome results in a viral mutant that is 
less efficient at reactivation [110]. This is consistent with 
the finding that increased TGFβ signaling leads to an 
increase in the host-encoded miRNA, hsa-miR-29, which 
ultimately targets YY1. In turn, recruitment of YY1 to 
the MIE enhancer/promoter is decreased, which relieves 
the repression of the viral promoter and leads to reacti-
vation [108]. Collectively, these findings reveal not only 
the importance of TGFβ signaling to latency and reac-
tivation, but the critical nature of this pathway towards 
regulating a central transcription factor that contributes 
to the balance between the active and repressive states of 
the MIE enhancer/promoter. This latter point is ampli-
fied by the multiple biological mechanisms HCMV has 

devised to regulate cell signaling that culminates at YY1 
regulation.

A region rich in transcription factor binding sites, the 
MIE enhancer/promoter locus is studded with multiple 
binding sites for those which activate this very strong 
promoter region. Thus, just as the virus must evolve 
strategies to only recruit silencing transcription fac-
tors like YY1 during latency, HCMV has converse tac-
tics to recruit transcription factors that activate the MIE 
enhancer/promoter as the virus reactivates. Investigators 
have shown that several of these transcription factors 
are regulated by viral manipulation of host cell signal-
ing. For example, Keller an colleagues found transcrip-
tion from the MIE locus was derepressed in quiescently 
infected NTera2-derived neuronal cells treated with 
forskolin, a compound that phosphorylates CREB [115, 
116]. Indeed, this was reliant upon the CRE-binding 
sites located within the MIE distal enhancer [115]. More 
recently, Kew et al. showed phosphorylated CREB bind-
ing to the MIE enhancer/promoter aids in viral reactiva-
tion in DCs, which is dependent upon the activation of 
the ERK-MSK signaling axis. Consistent with this, dele-
tion of the CREB binding sites in the MIE enhancer/
promoter region results in a mutant virus unable to reac-
tivate in DCs, though both CD14+ monocytes and imma-
ture DCs maintained viral genomes. It is also important 
to point out that in this context, CREB not only acts as 
a canonical transcription factor, but it also promotes 
the phosphorylation of histone H3, which aids in chro-
matin remodeling of the MIEP, facilitating reactivation 
[73]. More recently, we showed a parallel mechanism 
for regulating CREB activity and recruitment to the MIE 
enhance/promoter. Consistent with previous findings in 
other cell types (e.g. COS-7, fibroblasts; [117, 118]), we 
found signaling via the viral GPCR, UL33, activates CREB 
[63]. Furthermore, UL33-mediated signaling facilitates 
recruitment of phospho-CREB to the MIE locus during 
reactivation. Indeed, disruption of the entire UL33 ORF 
or UL33’s G-protein coupling motif (the ‘DRY’ motif ) 
results in a failure to reactivate from latency following 
infection of CD34+ HPCs, despite the ability of each 
mutant virus to maintain viral genomes. While phospho-
CREB was recruited to the MIE locus in latently infected 
Kasumi-3 hematopoietic cells treated with 12-O-tetrade-
canoylphorbol-13-acetate (TPA) to induce reactivation 
[63, 119], this was significantly reduced in parallel cul-
tures infected with either UL33 mutant [63]. Since cellu-
lar GPCRs coupled to Gαo activate CREB via p38 MAPK 
[120], it is plausible UL33 uses a similar mechanism. 
However, inhibition of p38 MAPK in monocytes had lit-
tle impact on phospho-CREB binding to the MIE locus 
[73]. Thus, additional work is needed to comprehensively 



Page 9 of 17Smith et al. Virol J          (2021) 18:207 	

understand the upstream mechanisms underlying CREB 
regulation.

NF-κB and AP-1 host transcription factors also func-
tion to activate the MIE enhancer/promoter (reviewed 
in [29]). Latently infected Kasumi-3 hematopoietic 
cells stimulated with tumor necrosis factor (TNF) α to 
induce reactivation [119] and treated simultaneously 
with curaxins to inhibit NF-κB, results in a significant 
decrease in UL123 transcription, when compared to cul-
tures treated with TNFα alone [121]. Furthermore, the 
HCMV-encoded GPCR, US28 attenuates NF-κB during 
latent infection [82], consistent with the requirement of 
US28 expression and signaling for viral latency, discussed 
in detail below [25, 57, 62, 82, 122–126]. In fact, phar-
macological inhibition of NF-κB in monocytes infected 
with a US28-deletion viral mutant resulted in an infec-
tion that favored latency rather than the lytic-like phe-
notype infection with this mutant usually observed [82]. 
With four binding sites within the MIE enhancer/pro-
moter (reviewed in [29]), it is likely NF-κB’s role during 
reactivation is key. Further work elucidating the exact 
mechanisms by which US28, for example, modulates host 
signaling to regulate this important transcription factor is 
warranted and may reveal hematopoietic-specific signal-
ing cascades critical for viral reactivation.

AP-1 is a heterodimeric transcription factor, comprised 
of c-fos and c-jun subunits [127]. We have shown previ-
ously that both c-fos [62] and c-jun [128] are attenuated 
during latency, thereby limiting their heterodimerization. 
The balance of AP-1 binding to the MIE enhancer/pro-
moter is key to its regulation; while the absence of AP-1 
binding aids in keeping the MIE enhancer/promoter 
silenced [62], its binding to the promoter proximal site 
is required for viral reactivation [129]. Despite a require-
ment of this transcription factor for reactivation, how-
ever, AP-1 binding is dispensable for lytic replication in 
fibroblast or epithelial cells [72, 129]. The upstream sign-
aling events regulating fos and jun are currently under 
investigation, and while we have shown US28-induced 
signaling targets fos [62], the viral and/or cellular factors 
manipulating jun are unknown. As discussed in more 
detail below, the signaling cascade US28 hijacks to atten-
uate c-fos remains to be elucidated, but it is likely that 
the virus balances the activation and attenuation of sign-
aling cascades to skew the cellular milieu towards one 
that favors latency versus one that aids in reactivation. 
Thus, viral proteins, like US28, are likely antagonized to 
“switch” their functions during reactivation, similar to 
the relationship between UL138 and UL135.

A recent study detailed the involvement of Krup-
pel-associated box domain-associated protein 
(KAP)-1/ tripartite motif-containing (TRIM) 28 and 
mammalian target of rapamycin (mTOR) during latency 

and reactivation in CD34+ HPCs [130]. KAP-1 co-regu-
lates transcription, as it recruits SET domain bifurcated 
(SETDB) 1 and HP1α, which facilitate H3K9me3. This 
histone modification is a repressive chromatin mark, 
and during HCMV latency, represses the MIE locus after 
SETDB1 and HP1α recruitment (reviewed in [29]). As 
a result, these factors silence the MIE locus throughout 
latency. However, when mTOR is activated, it phospho-
rylates KAP-1, relieving chromatinization of the MIE 
locus, leading to activation of lytic gene transcription 
and the production of viral particles, suggesting a role 
for this pathway in both latency and reactivation [130]. 
Supporting this, and as mentioned above, work from 
Buehler et al. reveal treatment with either an Akt or PI3K 
pharmacological inhibitor stimulates lytic replication 
in CD34+ HPCs cultured under latent conditions [80]. 
Additionally, we have shown HCMV stimulates mTOR 
activity 24 h post-latent infection of monocytes [17, 18], 
though this activity was not sufficient to drive active rep-
lication [18]. This could reflect differences in cell type 
specificity or cell environment at distinctive times during 
latent infection (e.g. early [24hpi] vs. later [7dpi] events). 
Alternatively, this supports the notion that mTOR is 
regulated in a rheostat-like fashion, where a threshold of 
activation has to be met or has not been reached. While 
the mechanism(s) through which this pathway is regu-
lated remain unknown, rapamycin, an mTOR inhibitor, 
administered to transplant recipients suppresses viral 
reactivation [131–134]. Whether this is due to a direct 
impact on the virus or the immune response is debated 
[135], since rapamycin failed to impact UL123 expres-
sion in LPS-stimulated DCs [136]. MAPK and Akt sign-
aling axes regulate downstream mTOR signaling, all of 
which are implicated in entry and maintenance of CMV 
in cells supporting latency [137]. Akt is activated rapidly 
following latent infection of monocytes [16, 18, 138] and 
CD34+ HPCs [80], though it is attenuated by 72hpi in 
monocytes [16, 138] and minimally sustained in CD34+ 
HPCs [80]. Similarly, mTOR signaling is also rapidly 
upregulated within 24hpi of monocytes [17, 18], which is 
attenuated during latency maintenance [130]. Addition-
ally, sustained pharmacological inhibition of Akt activ-
ity results in reactivation of WT, latent virus in CD34+ 
HPCs [80], suggesting completely abrogating Akt activ-
ity for prolonged times alters the cellular environment, 
such that it no longer is amenable to supporting HCMV 
latency.

Manipulation of MAPK signaling
The importance of MAPK signaling to HCMV latency 
and reactivation has become increasingly clear over the 
past decade. Several studies have shown MAPK signal-
ing promotes HCMV reactivation in monocyte-derived 



Page 10 of 17Smith et al. Virol J          (2021) 18:207 

DCs [73, 77, 139]. However, this regulation is not binary; 
like Akt, low-levels of MEK and ERK phosphorylation 
are maintained during HCMV latent infection [80], argu-
ing activity of these MAPK proteins is fine-tuned. Addi-
tionally, such subtle differences may reflect tissue- or 
cell type-specificity. In support of this, MAPK activa-
tion promotes reactivation in a cell type specific manner 
[139, 140], suggesting that not all cells that harbor CMV 
latently do so similarly (reviewed in [141]). Indeed, IL-6 
mediated activation of MAPK signaling facilitates viral 
reactivation in monocyte-derived-DCs and monocyte-
derived-Langerhans-like cells (LCs), although viral reac-
tivation was not coupled with activation of IL-6-mediated 
MAPK signaling in LCs [77, 140], suggesting involvement 
of other viral or host factors. As mentioned above, SFKs, 
specifically Src and Hck, play  important roles in this cell 
type-specific signaling (reviewed in [141]). Both of these 
SFKs display upregulated expression during reactivation 
in monocyte-derived-DCs, and while MAPK activity 
impacts histone phosphorylation at the MIEP, chromati-
nization is regulated in parallel in an SFK-dependent 
fashion via the recruitment of MOZ histone acetyl-
transferase (HAT) [77]. Upstream of SFK signaling are 
various receptors capable of potentiating signals, one of 
which is the receptor tyrosine kinase, Fms related recep-
tor tyrosine kinase 3 receptor (FLT-3R), which down-
stream, regulates a cascades such as Ras and ERK/MAPK 
(reviewed in [142]). Crawford et  al. recently identified 
pUL7 as a novel, secreted ligand for the FLT-3R using 
HEK293T cells. This ligand-receptor interaction indeed 
leads to cellular signaling, and in bone marrow lympho-
blast cells, PI3K/Akt and MAPK signaling cascades are 
activated. In turn, pUL7 induces differentiation of both 
HPCs and monocytes. Supporting these data, the inves-
tigators found that pUL7 required for reactivation [143].
Thus, pUL7 activation of MAPK signaling may represent 
another mechanism HCMV has devised to ensure viral 
reactivation. Whether Src and/or Hck aid in regulating 
the pUL7-FLT-3R cascade to impact downstream MAPK 
signaling remains unknown, but it is attractive to hypoth-
esize these factors coordinate their functions to ensure 
proper MAPK activity during viral reactivation. Further-
more, such regulation may in fact be cell type depend-
ent, underscoring the need to interrogate such pathways 
across hematopoietic cell model systems. To this point, 
the addition of MEK or ERK inhibitors in combination 
with reactivation stimuli significantly increases viral 
reactivation compared to reactivated CD34+ HPCs in the 
absence of the inhibitors [80]. These data reveal: 1) MEK/
ERK inhibition alone is not sufficient to drive reactiva-
tion, 2) significant increases in MEK/ERK phosphoryla-
tion tip the balance towards reactivation, and 3) MAPK 
activity as it pertains to HCMV latency and reactivation 

may depend on cell type. Collectively, these data reveal 
MAPK signaling is a key pathway usurped by HCMV 
during latency and reactivation, and like Akt, is likely 
fine-tuned by the virus to skew the host cell environment 
to favor a specific phase of infection.

US28‑mediated regulation of viral latency and reactivation
US28 has long been considered a latency-associated tran-
script, as early as 1998 when Patterson and colleagues 
showed this viral GPCR was detected in the peripheral 
blood mononuclear cells of infected individuals [144]. 
Shortly thereafter, Beisser et al. were the first to demon-
strate US28 was transcribed during latent infection of 
THP-1 monocytic cells [145]. Until recently, however, a 
role for US28 during this phase of infection had not been 
described. We were the first to demonstrate the require-
ment for US28 during viral latency [57], a finding subse-
quently confirmed independently by several groups [25, 
82, 122–124, 126]. US28 is a potent signaling molecule 
[146], thus it is unsurprising that US28-mediated signal-
ing helps establish and maintain viral latency [57, 62, 82, 
147]. Incorporation of US28 into the mature viral parti-
cle [57, 62] allows for its immediate expression, facilitat-
ing silencing of the MIE promoter/enhancer as early as 
2 days post-infection of hematopoietic cells [62]. To this 
end, US28 attenuates MAPK and NF-κB signaling [82], 
as well as fos expression downstream [62]. That US28 
regulates the MAPK pathway is consistent with previ-
ous studies showing the upregulation of MAPK signaling 
promotes HCMV reactivation in monocyte-derived DCs 
[73, 77, 139], detailed above. US28-mediated attenuation 
of MAPK signaling is also consistent with downstream 
suppression of fos, which ultimately prevents the AP-1 
transcription factor from binding and activating the MIE 
promoter/enhancer [62]. As detailed above, preventing 
recruitment of AP-1 to this promoter region is critical 
for successful latent infection, and conversely, its binding 
is essential for viral reactivation [129]. As an active sign-
aling protein expressed during latency, it is perhaps not 
surprising that US28 regulates host factors that ultimately 
impact the activity of the MIE enhancer/promoter, since 
this region is so crucial to balancing latency and reacti-
vation. Recently, Elder et  al. demonstrated US28 also 
regulates CCCTC-binding factor (CTCF) binding to the 
MIE enhancer/promoter. CTCF binding to this region 
increases during latency, thereby suppressing transcrip-
tion from the MIE locus. Indeed, this is dependent upon 
US28-mediated signaling [122]. Furthermore, these new 
data reveal that the neutrophil chemoattractants, S100A8 
and S100A9, which are downregulated during latency 
[148], are in fact regulated, at least in part, by US28-
mediated recruitment of CTCF to their promoter [122], 
revealing yet another means by which US28 manipulates 
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cellular proteins, rendering the host cell more amenable 
to viral latency.

As much as we have learned collectively as a field, there 
are many outstanding questions surrounding US28’s 
function(s) during latency that remain. For the signal-
ing pathways US28 regulates that are identified to-date, 
it is clear from that US28 alters the cellular milieu during 
latency in a ligand- [57, 62, 82, 126, 147] and G protein-
coupling-dependent fashion [57, 62, 82, 126]. US28 binds 
a variety of cellular chemokines and couples to various G 
proteins (reviewed in [56]), thus understanding the key, 
cellular proteins US28 usurps to its advantage will inform 
potential treatment strategies. Latently infected granulo-
cyte macrophage progenitors (GMPs) display an increase 
in the expression of the CC chemokine, monocyte chem-
otactic protein-1 (MCP-1) [149], a known US28 ligand 
(reviewed in [56]). Pharmacological inhibition of Gα 
proteins with pertussis toxin or PI3K with wortmannin 
attenuated MCP-1 transcript levels [149], suggesting this 
is regulated via GPCR-mediated signaling. Though the 
molecular mechanism(s) underpinning MCP-1’s regula-
tion during latency is yet to be elucidated, it is certainly 
plausible the viral-encoded GPCRs expressed during 
latency [57, 63, 145, 150, 151], such as US28, may lever-
age MCP-1’s upregulation to its own advantage, perhaps 
promoting dissemination in the initial stages of viral 
infection.

While the numerous host cell chemokines are obvi-
ous potential ligands for US28, it is equally plausible 
US28 interacts with a viral-encoded chemokine. HCMV 
encodes viral chemokines and cytokines (reviewed in 
[152]), thus, this could represent a novel mechanism by 
which US28 regulates host cell signaling in hematopoi-
etic cells, thereby retaining the virus in its latent state 
until given the proper cues. While US28 is not required 
for viral reactivation in hematopoietic cells [25, 82, 
122–124, 126], Crawford et  al. published expression of 
the complete, functional US28 ORF has no impact on 
maintaining latency, but is required for viral reactivation 
in CD34+ progenitor cells isolated from fetal liver. [147]. 
This difference is possibly explained by tissue origin of 
the cells (fetal liver-derived vs. hematopoietic-derived). 
Nonetheless, since this viral GPCR is expressed through-
out all stages of infection, some host or viral factor(s) 
likely influence US28 during reactivation in hematopoi-
etic cells to either overcome its strong “pro-latent” signal-
ing, or “switch” its signaling to favor lytic infection.

miRNA regulation of latency and reactivation
Both host cell- and viral-encoded miRNAs have func-
tions during latency and reactivation (reviewed in [153]). 
The known functions for cmv-US5-2, cmv-miR-UL22A, 
and cmv-miR-US22 are discussed above. Several other 

CMV-encoded miRNAs also regulate cell signaling 
pathways during latency and reactivation. For exam-
ple, cmv-miR-US25-1 targets RhoA, and disruption 
of this viral-encoded miRNA increases the prolifera-
tion of CD34+ HPCs [154]. As part of the Rho family of 
GTPases, RhoA acts as a switch for a variety of signaling 
cascades as it cycles between its inactive GDP-bound and 
active GTP-bound states (reviewed in [155]). How RhoA 
might be manipulated and coopted by viral signaling 
proteins and other factors during latency in hematopoi-
etic cells is unclear, though Diggins et  al. hypothesize a 
role for TGFβ signaling [154], which regulates the RhoA 
pathway [156–161]. If true, this would reveal yet another 
means by which HCMV attenuates the TGFβ cascade 
during latency. As discussed above, cmv-miR-UL22A 
targets SMAD3 to prevent robust TGFβ signaling during 
latent infection of CD34+ HPCs [110]. Thus, it is possi-
ble that cmv-miR-US25-1 and cmv-miR-UL22a function 
cooperatively to ensure this host cell signaling pathways 
is dampened during latent infection. Similarly, cmv-miR-
UL148D, which is robustly expressed during viral latency, 
targets the activin signaling axis in monocytes, by directly 
suppressing the activin A receptor type (ACVR) 1B cel-
lular receptor, which in turn limits the secretion of IL-6 
[162]. This represents a possible mechanism by which 
the virus subverts immune detection. Additionally, cmv-
miR-UL148 targets the cellular immediate early response 
gene 5 (IER5). Repression of IER5 results in an increase in 
host-encoded cell division cycle 25B (CDC25B) expres-
sion, which aids in suppressing UL123 transcription 
while simultaneously increasing cyclin-dependent kinase 
1 (CDK1). Thus, cmv-miR-UL148-mediated regulation of 
the IER5-CDC25B axis is important for latent infection 
of Kasumi-3 and primary CD34+ cells [163]. cmv-miR-
US5-1 and cmv-miR-UL112 also function to alter host 
cell signaling pathways during latency. Hancock and col-
leagues recently found these two viral-encoded miRNAs 
downregulate host cell Forkhead box O3a (FOXO3a). 
While both miRNAs protect CD34+ HPCs from apop-
tosis [164], whether their expression and targeting of 
FOXO3a is required for latency remains outstanding. 
FOXO3a binds and drives transcription from the MIE 
internal promoter 2 (iP2) [165], a promoter that aids in 
reactivation of latent virus in primary CD34+ HPCs [166] 
and Kasumi-3 cells [129]. Furthermore, mutation of the 
FOXO binding sites within the MIE promoter/enhancer 
locus leads to inefficient viral reactivation following 
stimulation of latently infected CD34+ HPCs [165]. 
Thus, it seems plausible that cmv-miR-US5-1 and cmv-
miR-UL112 target FOXO3a to limit sufficient quantities 
of this protein, such that it cannot transactivate the MIE 
locus. cmv-miR-UL112 may indeed have dual functions 
in this regard, as Lau et  al. showed this miRNA targets 
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IE72 in both monocytes and THP-1 monocytic cells to 
aid in the maintenance of latency [167], consistent with 
earlier work [168]. HCMV also modulates host cell miR-
NAs to suppress the MIE-encoded proteins. Indeed, hsa-
miR-200 family members target IE86. Mutation of the 
seed sequence in the UL122 3’ untranslated region (UTR) 
results in a virus that fails to undergo latency in Kasumi-3 
cells. Expression of this family of host-encoded miRNAs 
are upregulated in cells that favor latency (e.g. Kasumi-3, 
CD34+, and monocyte cells) [169], thus it is attractive 
to speculate that they may also target proteins involved 
in signal transduction networks. Collectively, both viral 
and host miRNAs are pivotal to latency and reactivation. 
Many of the changes these non-coding RNAs impart are 
small, yet significant. This again highlights that the regu-
lation of factors involved in cellular signaling are indeed 
fine-tuned.

Conclusions
It is quite evident that HCMV usurps host cell signal-
ing to its advantage, beginning as early as the initial 
phases of latency establishment and through reacti-
vation. Arguably, viral-manipulation of these signal-
ing cascades alters the cellular milieu, making it more 
amenable to viral latency. Indeed, such changes to the 
cell environment are further altered following external 
cues that trigger viral reactivation; pathways that were 
attenuated to establish and maintain latency become 
activated (and vice versa). However, it is important to 
realize the regulation of host cell signaling is not binary. 
Such cell signaling pathways are more likely finely regu-
lated, where the slightest of change in activity results 
in profound cellular changes. This is particularly evi-
dent during the establishment of latency where signal-
ing pathways important for generating the biological 
changes critical to supporting latency are often also 
activated during lytic infection to promote viral gene 
expression and replication. This paradox reveals the 
intricacy of viral manipulation of host cell signaling 
during latency establishment and maintenance, as well 
as reactivation. Cellular signaling cascades are inter-
twined, and their regulation is most likely dependent 
on multiple viral and cellular factors working in coor-
dinated fashion. Further work is necessary to unravel 
the regulatory mechanisms employed by HCMV to 
“rewire” the complex cellular signaling network that 
promote establishment, maintenance, and reactivation 
of HCMV latency within the myeloid compartment. 
Finally, viral manipulation of host signaling cascades is 
likely cell type specific depending on the type of infec-
tion elicited by HCMV. Quiescent infection of primary 
monocytes likely produces a signaling network skewed 
towards promoting the establishment of latency while 

signaling within latently infected hematopoietic cells is 
undoubtedly more conducive to both the establishment 
and long-term maintenance of latency. In turn, cell type 
specific signaling likely leads to differences in the acti-
vation signals necessary for reactivation into lytic rep-
lication. Thus, understanding how HCMV modulates 
cell signaling in the cells that support viral latency and 
reactivation will undoubtedly provide clues as to the 
pathways crucial to supporting these exact phases of 
viral infection, keeping in mind that even the cell type 
used for experimentation matters (e.g. monocyte ver-
sus CD34+ HPC). As more work is done in this area, 
we will likely identify pathways worthy of exploiting as 
novel therapeutic targets of the latent reservoir.
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