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Abstract 

Co-infections have a key role in virus transmission in wild reservoir hosts. We investigated the simultaneous presence 
of astroviruses, coronaviruses, and paramyxoviruses in bats from Madagascar, Mayotte, Mozambique, and Reunion 
Island. A total of 871 samples from 28 bat species representing 8 families were tested by polymerase chain reactions 
(PCRs) targeting the RNA-dependent RNA-polymerase genes. Overall, 2.4% of bats tested positive for the presence of 
at least two viruses, only on Madagascar and in Mozambique. Significant variation in the proportion of co-infections 
was detected among bat species, and some combinations of co-infection were more common than others. Our 
findings support that co-infections of the three targeted viruses occur in bats in the western Indian Ocean region, 
although further studies are needed to assess their epidemiological consequences.

Keywords:  Madagascar, Mozambique, Triaenops menamena, Triaenops afer, Multiple infections

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Co-infection (sometimes written as coinfection) can 
be defined as the simultaneous infection by at least two 
genetically different infectious agents in the same host 
[1–5]. It can affect both host fitness and disease trans-
mission dynamics, therefore playing a critical role in the 
epidemiology of infectious agents [4–7]. In bats, although 
many studies have focused on the detection of emerg-
ing viruses such as astroviruses (AstVs), coronaviruses 
(CoVs), and paramyxoviruses (PMVs), limited data is 
available regarding co-infection patterns and its potential 
effect on host fitness and disease transmission dynamics 
[8–13].

In previous studies, we have investigated the presence 
of either AstVs, CoVs or PMVs in bats in the western 
Indian Ocean (WIO) region [14–23]. Here, we conducted 
a meta-analysis of published data [19–21, 23] and per-
formed additional molecular screening in order to obtain 
a final dataset of 871 bat samples tested for AstVs, CoVs, 
and PMVs from 28 species representing 8 bat families 
(see Additional file 1 and Additional file 2).

Biological material was collected on Madagascar, in 
Mozambique, on Mayotte, and on Reunion Island as 
part of previous investigations on infectious agents cir-
culation in bats (details relating to the collection of bio-
logical material are available in [23]). The list of samples 
included in this study (e.g. bat species, location, date, 
type of samples) is provided in the Additional file 1. All 
samples were previously tested for the presence of CoV 
[23]; some of them were also tested for the presence 
of AstV (516 samples; [20, 21]) and PMV (167 sam-
ples; [19]). Additional assays were thus performed for 
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the detection of the AstV (355 samples) and PMV (704 
samples) RNA-dependent RNA-polymerase (RdRp) 
genes. Molecular detection was performed using semi-
nested polymerase chain reactions (PCRs), as previ-
ously described [16, 17, 19–21, 24, 25]. PCR products 
were visualized on 2% agarose gels stained with 2% 
Gelred (Biotium, Hayward, CA, USA). Pearson Chi 
square tests were conducted to examine the effect of 
the roost sites (i.e. cave, building, tree), host species, 
sex, and sampling location (i.e. country or island), on 
virus detection, and to investigate potential associa-
tions between AstV, CoV, and PMV. Analyses were con-
ducted with R, version 4.0.5 [26].

PCR products of expected size were submitted for 
direct Sanger sequencing (Genoscreen, Lille, France). 
Nucleotide sequences were aligned to generate con-
sensus sequences, and were edited manually using 
ChromasLite 2.6.5 (Technelysium Pty, South Bris-
bane, Australia). The 33 partial AstV sequences and 
13 partial PMV sequences generated in this study were 
deposited in GenBank respectively under the accession 
numbers MZ614404 to MZ614436 and MZ614437 to 
MZ614449. Genetic diversity was explored with pair-
wise distance values obtained from phangorn package 
in R, version 2.6.3 [27]. Sequences were compared to 
reference sequences in NCBI GenBank using the Basic 
Local Alignment Search Tool (BLAST) with the stand-
ard nucleotide BLAST (BLASTn) algorithm (BLAST was 
performed on August 18th, 2021) [28, 29]. Then, AstV 
and PMV sequences generated in this study were respec-
tively aligned with 105 and 74 reference partial nucleo-
tide sequences, using CLC Sequence Viewer version 7.6.1 
(CLC Bio, Aarhus, Denmark). Phylogenetic trees were 

generated by maximum-likelihood using PhyML soft-
ware 3.1 [30], with a GTR evolutionary model, and 1000 
bootstrap replicates.

One hundred and forty-two samples tested positive 
for AstV (mean detection rate ± 95% confidence inter-
val: 16.3% ± 2.5%) (Additional file  2). Positive samples 
were detected only in Mozambique (20.2% ± 3.6%) and 
on Madagascar (18.6% ± 3.5%), without significant varia-
tion between these two locations (χ2 = 0.3, df = 1, P > 0.5). 
Significant differences in AstV detection were observed 
between roost types (χ2 = 6.2, df = 1, P < 0.05), between 
species (χ2 = 311.8, df = 24, P < 0.001) and between males 
(20.9% ± 3.8%) and females (11.6% ± 3.0%) (χ2 = 5.9, 
df = 1, P < 0.05). AstV prevalence was significantly higher 
in bats species roosting in caves (27.5% ± 3.9%) than in 
buildings (2.5% ± 2.0%). On Madagascar, a high detection 
rate was found in species of the genus Miniopterus as 
compared to the other taxa (χ2 = 162.4, df = 1, P < 0.05), 
and especially in Miniopterus manavi (88.9% ± 14.5%), 
Miniopterus gleni (86.7% ± 17.2%), and Miniopterus 
sororculus (71.4% ± 33.5%). The highest AstV detection 
rate in Mozambique was observed in Triaenops afer 
(68.6% ± 12.7%).

A total of 32 samples tested positive for PMV 
(3.7% ± 1.3%) (Additional file  2). Positive samples were 
detected only on Madagascar (5.2% ± 1.3%) and in 

Fig. 1  Global co-infection patterns by astroviruses, coronaviruses and 
pamaxyxoviruses in bats from Madagascar (A) and Mozambique (B)

Fig. 2  Co-infection by astroviruses, coronaviruses and 
paramyxoviruses in bat species from Madagascar
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Mozambique (2.7% ± 1.1%), without significant difference 
between locations (χ2 = 2.5, df = 1, P > 0.5). Significant 
differences were detected between males (5.4% ± 2.1%) 
and females (1.9% ± 1.3%) (χ2 = 7.6, df = 1, P < 0.05), and 
between roost sites (χ2 = 7.3, df = 2, P < 0.01). Bats living 
in caves were more frequently positive (5.7% ± 2.0%) than 
those living in buildings (1.7% ± 1.6%). The proportion 
of positive bats was also significantly different between 
species on Madagascar (χ2 = 91.9, df = 27, P < 0.001), 
particularly in Triaenops menamena (42.4% ± 16.9%). In 
Mozambique, differences between species were not sta-
tistically significant (χ2 = 1.3, df = 3, P > 0.05).

The detection of CoV was conducted as part of a previ-
ous study [23]. Briefly, 82 of the 871 samples were posi-
tive for CoV (9.4% ± 1.9%), with a higher prevalence in 
Mozambique (20.5% ± 2.7%) (χ2 = 50.4, df = 3, P < 0.001) 
and no difference between males and females (χ2 = 2.7, 
df = 1, P > 0.05) (Additional file 2). Positive samples were 
detected only in bats roosting in caves (10.7% ± 2.6%) 

and buildings (8.0% ± 3.1%), without statistical difference 
between these two roost sites (χ2 = 1.7, df = 1, P > 0.05). 
However, a significant variation was detected among bat 
species (χ2 = 125.7, df = 27, P < 0.001). In Mozambique, 
the highest prevalence was detected in the cave roosting 
Rhinolophus lobatus (66.7% ± 30.8%). No difference was 
observed among the species that tested positive on Mad-
agascar (χ2 = 2.3, df = 3, P > 0.05).

The overall proportion of positive bats detected for 
either AstVs or PMVs was consistent with previous stud-
ies performed in the WIO region, and in other tropical 
regions [31–34]. Interestingly, higher detection rates 
were found for both viruses in bats using caves as day-
roost sites, suggesting that cave-roosting behavior maybe 
favorable for horizontal transmission between bats [35]. 
Differences between locations, sex, and bat species may 
be explained by a range of factors. For example, seasonal-
ity has been identified as a major driver of the infection 
dynamics of many pathogens, affecting both host sus-
ceptibility and transmission [17, 36–39]. Important sea-
sonal variation in the prevalence of infected animals can 
depend on the period the samples were collected, and, in 
turn, can lead to misrepresentative conclusions regarding 
the level of bat exposure to viruses, in particular in cross-
sectional studies. Longitudinal studies in wild animals are 
thus important to precisely assess prevalence of infected 
animals and its temporal variation [17, 37, 40].

Twenty-one of the 871 samples tested positive for more 
than one virus (2.4% ± 1.0%). These co-infections were 
detected only in Mozambique (5.0% ± 2.7%) and on Mad-
agascar (1.7% ± 1.1%), with significant variation among 
these locations (χ2 = 7.0, df = 1, P < 0.01) (Fig.  1, Addi-
tional file 3). In both location, co-infections were detected 
only in bats roosting in cave (Madagascar: χ2 = 6.4, df = 1, 
P < 0.05; Mozambique: χ2 = 1.9, df = 1, P > 0.05), and no 
significant variation was observed between males and 
females (Madagascar: χ2 = 3.6, df = 1, P > 0.05; Mozam-
bique: χ2 = 3.3, df = 1, P > 0.05). Globally, co-infections 
involving AstV-CoV (1.4% ± 0.8%) and AstV-PMV 
(1.1% ± 0.7%) were more frequently detected than CoV-
PMV (0.1% ± 0.3%) and AstV-CoV-PMV (0.3% ± 0.4%) 
(χ2 = 11.3, df = 3, P < 0.05) (Fig. 1). The presence of AstVs 
was strongly correlated to the presence of PMVs (χ2 = 4.6, 
df = 1, P < 0.05) suggesting a potential positive associa-
tion between these two viruses. Co-infections involving 
AstVs, CoVs or PMVs were reported in other tropical bat 
species. For example, a study of Hipposideros cervinus on 
Borneo reported 4.1% of AstV-CoV coinfected bats with 
a positive association between these two viruses [11].

On Madagascar, co-infections were detected in 
three of the 18 tested species: Triaenops menamena 
(15.2% ± 24.7%), Miniopterus gleni (13.3% ± 14.8%), 
and Paratriaenops furculus (3.2% ± 0.2%), without 

Fig. 3  Co-infection by astroviruses, coronaviruses and 
paramyxoviruses in bat species from Mozambique
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Fig. 4  Maximum likelihood consensus tree derived from 138 astrovirus (AstV) RNA-dependent RNA-polymerase partial nucleotide sequences 
(397 bp). Black dots indicate nodes with bootstrap values higher or equal than 60. Sequence names colored in red indicate bat AstVs detected in 
this study. Sequence accession numbers are indicated in parentheses
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Fig. 5  Maximum likelihood consensus tree derived from 87 paramyxovirus (PMV) RNA-dependent RNA-polymerase partial nucleotide sequences 
(439 bp). Black dots indicate nodes with bootstrap values higher or equal than 60. Sequence names colored in red indicate bat PMVs detected in 
this study. Sequence accession numbers are indicated in parentheses
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significant difference between species (χ2 = 2.7, df = 2, 
P > 0.05) (Fig.  2). In Mozambique, co-infections were 
detected in four of the eight tested species: Triaenops 
afer (15.7% ± 10.0%), Nycteris thebaica (7.1% ± 13.5%), 
Hipposideros caffer (5.1% ± 5.6%), and Miniopterus mos-
sambicus (4.8% ± 9.1%) (χ2 = 4.4, df = 3, P > 0.05), also 
without significant difference between species (Fig.  3). 
Interestingly, co-infections were detected in bats of the 
family Rhinonycteridae both in Mozambique (Triaenops) 
and on Madagascar (Triaenops and Paratriaenops). In 
Mozambique, the proportion of co-infections was sig-
nificantly higher in Triaenops afer than in all other tested 
species (χ2 = 4.4, df = 1, P < 0.05). Also, as compared to 
other species that tested positive for co-infection, dif-
ferent combinations of co-infections (i.e. different asso-
ciations between viruses) were detected in species of 
the genus Triaenops. Indeed, Triaenops menamena on 
Madagascar presented two types of co-infections: AstV-
PMV and CoV-PMV, whereas Triaenops afer in Mozam-
bique harbored three types: AstV-CoV, AstV-PMV, and 
AstV-CoV-PMV; while other species, including Paratri-
aenops furculus, only presented one co-infection type 
(Figs.  2 and 3 and Additional file  3). Altogether, these 
results highlight multiple infections in WIO region bats, 
and give rise to additional questions concerning varia-
tion among species, as well as their consequences on viral 
infection dynamics.

High genetic diversity was detected for AstV, with 
pairwise differences up to 46% between sequences, 
without support for host family or species association 
(Fig. 4). Based on BLASTn comparisons, we found that 
our sequences had a high level of identity (between 80 
and 92%) with AstV previously described in bats of the 
WIO region [20, 21], as well as with AstVs detected in 
bats from continental Africa (e.g. Gabon, Democratic 
Republic of Congo), and in other regions in the world 
(e.g. China, Thailand) (Additional file 4). However, one 
sequence obtained from a Triaenops menamena, a spe-
cies endemic to Madagascar, showed 92% identity to an 
AstV sequence detected in a mouse from China (Addi-
tional file 4). Another example, even more unexpected, 
one AstV sequence obtained from Chaerephon leu-
cogaster on Madagascar had 96% identity with an AstV 
sequence from a bird of the order Passeriformes (Addi-
tional file 4). These findings were consistent with phylo-
genetic results and were statistically supported (Fig. 4). 
A recent study also reported AstVs related to avastro-
virus in environmental samples collected in a colony of 

Mormopterus francoismoutoui, a member of the family 
Molossidae endemic to Reunion Island [41]. These find-
ings may suggest introduction of AstVs on the island 
by non-native rodents, and could also support environ-
mental transmission of AstVs between species of dif-
ferent taxa, as previously suggested [42]. Nevertheless, 
studies investigating the circulation of AstVs in terres-
trial small mammals in the WIO region are required to 
assess these potential host-shifts.

Genetic diversity was less important for PMV 
sequences, with pairwise differences up to 29%. All 
our sequences were genetically related to PMVs pre-
viously described on Madagascar [16, 19] or in con-
tinental Africa (e.g. Ghana, Kenya), with sequence 
identity ranging from 78 to 99% (Additional file 5 and 
Fig. 5). Phylogenetic analyses highlighted some degree 
of host-specificity, as previously described for PMV in 
the western Indian Ocean (Fig.  5) [16]. For instance, 
most sequences clustered either with PMV sequences 
detected in bats on the same genus captured in the 
region or elsewhere (e.g. Hipposideros caffer from 
Mozambique), or with sequences obtained in bats from 
the same family (e.g. Mops condylurus sequence from 
Mozambique, and Chaerephon leucogaster sequence 
from Madagascar clustered with a sequence detected 
in Mops leucostigma on Madagascar). However, some 
sequences were included in more diversified groups 
including different bat families (e.g. two sequences 
obtained from Paratriaenops furculus on Madagascar 
that clustered with sequences detected in Miniopterus 
griveaudi and Chaerephon leucogaster on Madagascar).

We report co-infections in bats on Madagascar and 
in Mozambique, ranging from 3.2% to 15.7% of the 
positive samples, and depending on the tested bat spe-
cies. Although our cross-sectional sampling precludes 
detailed interpretation of the biological drivers of such 
variation, our results nevertheless highlight that inter-
actions between infectious agents in bats may exist 
with potential consequences on their epidemiology. 
AstVs, CoVs, and PMVs are emerging viruses that rep-
resent a major challenge for human and animal health. 
Further knowledge on virus interaction in wildlife, 
based on long-term longitudinal sampling is needed 
to fully assess the epidemiological consequences of co-
infections [5].
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