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COMMENTARY

The basic reproductive number 
and particle‑to‑plaque ratio: comparison 
of these two parameters of viral infectivity
Winston McCormick1 and Leonard A. Mermel2,3*   

Abstract 

The COVID-19 pandemic has brought more widespread attention to the basic reproductive number (Ro), an epide-
miologic measurement. A lesser-known measure of virologic infectivity is the particle-to-plaque ratio (P:PFU). We sug-
gest that comparison between the two parameters may assist in better understanding viral transmission dynamics.
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As the COVID-19 pandemic continues, attention has 
been brought to the epidemiologic measure known as 
the basic reproductive number (Ro), the expected num-
ber of cases arising from an index case in a susceptible 
population [1–5]. The Ro is differentiated from Re or Rt, 
the effective reproduction number, which accounts for 
public health measures such as vaccination, contact trac-
ing, or social distancing [2, 5, 6]. The Ro indicates the 
potential for viral transmission in a population. When 
Ro > 1, the virus exhibits spread within a population, and 
when it is less than 1, it does not have the potential to 
spread. The Ro is determined from mathematical models 
and must be interpreted under the context that models 
are often imperfect. Indeed, to be a true reflection of the 
Ro, the model cannot involve any public health measures 
taken to delay viral transmission. A major limitation of Ro 
is that it is difficult to compare Ro values of two viruses 
if they are calculated using different models. Although 
there are many models to calculate Ro, a SEIR compart-
mental method is among the simplest and widely used 
available methods [7]. The higher the Ro, the more pub-
lic health measures must be expended to bring the Re < 1 

needed for an epidemic or pandemic to cease [2, 8]. The 
Ro can be manipulated to indicate parameters vital to  
control measures. For example, R−1

o  is the endemic equi-
librium proportion of the population that will remain 
susceptible, and 1− 1

Ro
 alerts public health officials to 

the proportion of a population that must be immunized 
to acquire herd immunity [1]. Imprecision in determin-
ing Ro can lead to public health  measures that are either 
too relaxed or too strenuous, leading to spread that is not 
adequately controlled or burnout among the public in 
maintaining control measures. Nevertheless, Ro can indi-
cate vital information to assist in planning public health 
interventions.

A lesser known measure of infectivity is the particle to 
plaque-forming unit ratio (P:PFU; Table  1). The P:PFU 
measures the fraction of viral particles able to infect sus-
ceptible cells in tissue culture under idealized in  vitro 
conditions [9–11]. When P:PFU approaches 1, as occurs 
with bacteriophages, each viral particle is able to com-
plete an infectious cycle in a susceptible cell (i.e., highly 
infectious to the cells in tissue culture) [9, 10]. For many 
animal viruses, the ratio is on the order of 500–10,000. 
There may be some uncertainty about this ratio since 
some viral particles used to infect cells in tissue culture 
may be nonviable [9, 11]. A high P:PFU ratio is often 
attributed to viral particles with incomplete genomes, 

Open Access

*Correspondence:  lmermel@lifespan.org
2 Department of Medicine, Warren Alpert Medical School of Brown 
University, 222 Richmond St, Providence, RI 02903, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8898-7406
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12985-021-01566-4&domain=pdf


Page 2 of 4McCormick and Mermel ﻿Virol J           (2021) 18:92 

structural capsid deficits, or lethal mutations [11]. The 
P:PFU ratio may add important insight into transmission 
dynamics of viral pathogens, especially when viral quan-
tification is necessary [9, 12].

Multiple reference values for P:PFU ratios are from 
older literature that have not been revisited. Virologists 
often calculate P:PFU ratios for strains in their labo-
ratories [13], but there are no standardized means of 
producing reference P:PFU ratios. Standardizing P:PFU 
ratio protocols and revisiting previously published data 
would be useful. For poliovirus, older sources docu-
ment a P:PFU ratio ranging from 1000 to 30 and have 
not been revisited for since 1957 [9, 18, 19]. However, 
without a standardized means of collection, there is no 

way to assess which value is more accurate. Infective 
virions constituting 10% of a viral population vs. 0.5% 
of a population is a monumental difference which could 
have ramifications regarding transmission dynam-
ics [12, 14, 15]. Furthermore, a lack of standardization 
may be associated with a wide range in P:PFU ratios for 
poliovirus, rhinovirus, and measles [9, 16–19]. In addi-
tion, P:PFU values must be interpreted with caution 
since viral passage in cell culture changes the P:PFU 
ratio as has been demonstrated for SARS-CoV-2 [20]. 
The inconsistency in cell line type (e.g., Vero 6 or HeLa 
cell lines) is another limitation due to lack of stand-
ardization [12]. Lastly, the P:PFU must be interpreted 
in context. A high P:PFU may represent defective 

Table 1  Characteristics of viral transmission including the particle to plaque forming unit ratio assessed in cell culture and 
reproductive number assessed in epidemiologic studies

VZV varicella zoster virus, HSV herpes simplex virus, HPV human papillomavirus. Only “true aerosol” diseases were classified as aerosol. [24] Minor routes of 
transmission (i.e., fomite, vertical, animal) were ignored for graphical analysis

Virus Particle:PFU Ro Ro/Particle:PFU Transmission Notes

Ebola
(-ssRNA)

511 [12] 1.5–1.9 [21] 2.9 × 10–3–3.7 × 10–3 Bodily Fluids Particle:PFU from strain at Walter 
Reed Medical Center [1]; Ro 
from 2014 epidemic [21]

Influenza A*
(-ssRNA)

20–509 0.9–2.1 [6] 4.2 × 10–2–4.5 × 10–2 Predominantly Respiratory 
Droplet

Seasonal strains

Smallpox
(dsDNA)

1–100 [9, 22] 6.87 [23] 1.46 × 10–1–14.6 Small particle aerosol Ro from 1967 outbreak smallpox

VZV
(dsDNA)

40000 [14] 10–12 [24] 2.5 × 10–4–3 × 10–4 Small particle aerosol; Vertical Ro pre-vaccine

Adenoviradae
(dsDNA)

20–100 [9] 2.34 [24] 2.3 × 10–2–1.2 × 10–1 Fecal–oral; Respiratory

Rotavirus
(dsRNA)

10 [9] 78.8 [26] 7.88 Fecal–oral; Droplet Ro pre-vaccine estimation

HSV-1*
(dsDNA)

50–200 [9] 2–5 [28] 2 × 10–2–4 × 10–2 Bodily Fluids, Sexual, Vertical P:PFU antecedently recorded 
as 10:1

HSV-2
(dsDNA)

50–200 [9] 2.07 [29] 1 × 10–2–4 × 10–2 Sexual; Vertical

Polio*
(+ ssRNA)

36–1000 [9, 19] 5–6 [24] 6 × 10–3–1.4 × 10–1 Fecal–oral

HPV
(dsDNA)

10000 [9] 0.52–1.2 [30] 5.2 × 10–5–1.2 × 10–4 Sexual STI strains; Ro assumes untreated 
population; ignores autoin-
noculation

Coxsackie A
(+ ssRNA)

210 [31] 2.5 [32] 1.2 × 10–3 Fecal–oral

Measles*
(-ssRNA)

10–200 [16, 17] 12–18 [3] 9 × 10–2–1.2 Small particle aerosol Ro pre-vaccine

RSV
(-ssRNA)

3200 [33] 1.2–3.0 [25, 34, 35] 3.8 × 10–4–9.4 × 10–4 Respiratory droplet; Fomite

Mumps*
(-ssRNA)

100–1000 [13] 10–12 [24] 1.2 × 10–2–1 × 10–1 Respiratory droplet Ro pre-vaccine

SARS-CoV
(+ ssRNA)

360 [36] 2.2–3.6 [4] 6.1 × 10–4–1 × 10–2 Respiratory droplet Particle:PFU from gRNA

Rhinovirus*
(+ ssRNA)

30–1000 [1, 18] 2–3 [35] 3 × 10–3–6.7 × 10–2 Respiratory droplet Inferred P:PFU; Ro seasonal 
change

SARS-CoV-2
(+ ssRNA)

1000–1000000 [20, 37] 2.6–5.7 [27] 5.7 × 10–6–2.6 × 10–3 Respiratory droplet; possible 
aerosol

Early studies suggest Ro closer 
to 2.6
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interfering particles that have incomplete circular 
genomes and are unable to form plaques in culture but 
can still complete an infectious cycle in vivo by relying 
on complete helper genomes as reflected in one study 
in which high P:PFU strains of Ebola virus were still 
able to generate lethal infections [12].

We found inconsistencies among the dynamics of 
transmission for respiratory viruses. Influenza A virus 
has a lower P:PFU than respiratory syncytial virus (RSV), 
but RSV has a higher Ro. This may reflect less than ide-
alized tissue culture conditions for RSV or much more 
efficient person-to-person RSV transmission. SARS-CoV 
and rhinovirus have higher P:PFU than Influenza A virus 
but also higher Ro. Perhaps this reflects the lack of ideal 
tissue culture conditions for SARS-Co-V and rhinovirus. 
With current limitations of P:PFU data, such discrepan-
cies may be clarified when more tissue culture data are 
collected in a uniform manner.

Could an assessment of the Ro/P:PFU ratio add to 
information garnered from either value alone as a virus 
such as SARS-CoV-2 evolves in its new human host? 
The new variants are evolving to more efficiently bind 
to ACE receptors on human cells [38] and this should 
lead to a lower P:PFU ratio, but it is unclear if or how 
this might affect person-to-person transmission of the 
virus, (i.e., affect the Ro). If the Ro/P:PFU ratio rises 
more quickly than the Ro alone, then it would suggest 
that improved receptor cell binding and/or cell entry 
did not translate into greater human-to-human trans-
mission. Such comparisons may add insight as SARS-
CoV-2 and other viruses adapt to a new host.

Conclusion
As the COVID-19 pandemic continues the relationship 
between the P:PFU ratios and Ro may add to our under-
standing of SARS-CoV-2 as variants evolve to adapt to 
the new human host.

Abbreviations
Ro: Basic reproductive number; P:PFU: Particle-to-plaque ratio; VZV: Varicella 
zoster virus; HSV: Herpes simplex virus; HPV: Human papillomavirus.
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