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Abstract 

Background:  The HIV-1 epidemic is still considered a global public health problem, but great advances have been 
made in fighting it by antiretroviral therapy (ART). ART has a considerable impact on viral replication and host immu‑
nity. The production of type I interferon (IFN) is key to the innate immune response to viral infections. The STING and 
cGAS proteins have proven roles in the antiviral cascade. The present study aimed to evaluate the impact of ART on 
innate immunity, which was represented by STING and cGAS gene expression and plasma IFN-α level.

Methods:  This cohort study evaluated a group of 33 individuals who were initially naïve to therapy and who were 
treated at a reference center and reassessed 12 months after starting ART. Gene expression levels and viral load were 
evaluated by real-time PCR, CD4+ and CD8+ T lymphocyte counts by flow cytometry, and IFN-α level by enzyme-
linked immunosorbent assay.

Results:  From before to after ART, the CD4+ T cell count and the CD4+/CD8+ ratio significantly increased (p < 0.0001), 
the CD8+ T cell count slightly decreased, and viral load decreased to undetectable levels in most of the group 
(84.85%). The expression of STING and cGAS significantly decreased (p = 0.0034 and p = 0.0001, respectively) after the 
use of ART, but IFN-α did not (p = 0.1558). Among the markers evaluated, the only markers that showed a correlation 
with each other were STING and CD4+ T at the time of the first collection.

Conclusions:  ART provided immune recovery and viral suppression to the studied group and indirectly downregu‑
lated the STING and cGAS genes. In contrast, ART did not influence IFN-α. The expression of STING and cGAS was not 
correlated with the plasma level of IFN-α, which suggests that there is another pathway regulating this cytokine in 
addition to the STING–cGAS pathway.
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Background
Human immunodeficiency virus 1 (HIV-1) infection and 
acquired immune deficiency syndrome (AIDS) are pub-
lic health problems due to their pandemic proportions. 
The virus infects about 37.9 million people worldwide, of 
which 24.5 million have access to antiretroviral therapy 
(ART) [1].
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HIV-1 infects CD4+ T cells, which causes immuno-
deficiency characterized by the reduction in these cells 
counts and an increase in CD8+ cytotoxic T cells [2]. 
Since the discovery of AIDS, several efforts have been 
made to contain the spread of the virus and prevent the 
infected individual from developing severe immunode-
pression leading to death. Of all the strategies studied 
and applied to date, ART has had great success, and its 
main objective is to suppress long-term viral multiplica-
tion and preserve or restore immune function [3–5].

The innate immune response to infections is mainly 
based on the recognition of the so-called pathogen-asso-
ciated molecular patterns (PAMPs) or damage-associated 
molecular patterns. Such recognition is only possible 
through the activity of pattern recognition receptors that 
are sensitive to signs of invasion by pathogenic microor-
ganisms and cellular damage. When pattern recognition 
receptors recognize molecular patterns, they send a sig-
nal to stimulate the antiviral innate immune response 
and/or pro-inflammatory cytokine response. The action 
of the initial response is mainly represented by interferon 
(IFN)-I, macrophages, and natural killer cells [6–9].

Because nucleic acids are a key element in pathogen 
replication, they are one of the main groups of PAMPs 
recognized by Toll-like receptors, members of the RIG-
1-like family [10], and the stimulator of interferon genes 
(STING), which was identified as a new nucleic acid 
detector [11]. STING binds directly to dsDNA or associ-
ates with second messengers called cyclic dinucleotides 
(CDNs), such as c-AMP, c-GMP, c-di-AMP, or c-di-GMP 
[12]. By binding to DNA or CDNs, STING is activated 
through the association with and activation of interferon 
regulatory factor (IRF) 3 and IRF7, after which it stimu-
lates the transcription of innate immunity genes such as 
the IFN-I gene. In a second signaling cascade, STING 
also activates the nuclear factor (NF)-κB pathway, which 
leads to the production of pro-inflammatory cytokines 
[13, 14]. The activity of the cGMP-AMP synthase (cGAS) 
enzyme, which is responsible for the synthesis of the sec-
ond messenger cGAMP, is essential for the detection of 
CDNs by STING and is therefore characterized as an 
essential element in the cytosolic signaling cascade by 
STING [15].

STING plays a major role in the production of IFN-I, 
as shown by both knockdown and overexpression experi-
ments in different cells. Studies with STING-deficient 
animals show that they are viable but extremely sensitive 
to infection by a variety of DNA and RNA viruses [11, 13, 
16]. Different viruses with DNA and RNA genomes have 
been implicated in cGAS/STING-dependent activation, 
including HIV-1 [17–19]. The silencing or deficiency of 
cGAS or STING strongly inhibits the induction of inter-
ferons and other cytokines. Cells with mutant cGAS are 

also unable to mount any detectable immune response 
against HIV infection [13, 19–22]. In addition, ART 
seems to interfere with cGAS activity, reducing IFN-I 
production [21, 22].

The present study evaluated the influence of ART on 
the expression of STING and cGAS, the production of 
type I IFN, and the levels of laboratory markers often 
used to monitor infection (CD4+, CD8+, and ratio of 
CD4+/CD8+ T cells and viral load) in a cohort infected 
with HIV-1.

Methods
Study population
Sixty-two HIV-1-infected patients were initially con-
tacted, but only 48 were eligible to start the study because 
they were not taking therapy. Ethnicity was not a crite-
rion for selecting and separating patients into subgroups, 
since the target population is representative of the popu-
lation of Belem, capital of Para State, that is composed by 
interethnic mixture. Likewise, transmission modes were 
not evaluated.

The 48 HIV-1-infected individuals, admitted to the 
Serviço de Assistência Especializada Casa Dia (Casa Dia 
Specialized Care Service), located in the municipality of 
Belem, Para, Brazil, were over 18 years old, and of either 
sex. All the patients enrolled in the present study were 
recently diagnosed; but did not know how long they had 
been infected. They were followed up for an average of 
12  months from the start of therapy. At the end of the 
12-month follow-up, only 33 individuals were still using 
ART and returned to the reference center.

The project was approved by the Research Ethics Com-
mittee of the Center for Oncology Research at the Fed-
eral University of Pará (CAAE 31446920.0.0000.0018). 
All subjects were duly informed of the objectives of the 
study, and those who agreed to participate in the study 
signed an informed consent form.

Sample collection and storage
Whole blood was collected in two 5-mL tubes contain-
ing K3-EDTA. The samples were placed in an appropri-
ate container for conservation and transported to the 
Laboratory of Virology of the Institute of Biological Sci-
ences of the Federal University of Pará (UFPA). A portion 
of each whole-blood sample was used for quantification 
of CD4+ and CD8+ T cells, and the other part was cen-
trifuged for separation of plasma and cells. The plasma 
HIV-1 viral load and INF-α level were quantified, and 
leukocytes were stored after the addition of TRIzol to 
maintain RNA integrity. All samples were stored at − 
70 °C until use.
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RNA extraction
Total RNA was extracted from peripheral-blood leuko-
cytes using the TRIzol™ Plus RNA Purification Kit (Ther-
moFisher Scientific, Waltham, Massachusetts, USA), 
and all steps followed the protocol recommended by 
the manufacturer. The concentration of extracted RNA 
was determined using a NanoDrop™ fluorimeter (Ther-
moFisher Scientific, Waltham, Massachusetts, USA) 
according to the manufacturer’s instructions. All total 
RNA samples were diluted to 50 ng/µL for complemen-
tary DNA (cDNA) synthesis.

Reverse transcription
The extracted RNA was converted into cDNA using the 
High Capacity cDNA Reverse Transcription® with RNase 
Inhibitor kit (Applied Biosystems, Foster City, CA, USA). 
For the reverse transcription reaction, a mix of 20 µL was 
prepared, which contained 2 µL of 10 × RT Buffer, 0.8 µL 
of 25 × dNTP Mix (100  nM), 2 µL of random primer, 1 
µL of MultiScribe™ Reverse Transcriptase, 1 µL of RNa-
seOUT™, and 3.2 µL of ultra-pure water, which were 
provided by the kit, plus 10 µL of extracted RNA. The 
mixture was placed in a Mastercycler Personal thermocy-
cler (Eppendorf, Hamburg, Germany) and cycled at 25 °C 
for 10 min, 37 °C for 120 min, and 85 °C for 5 min.

mRNA quantification by real‑time quantitative PCR (qPCR)
Initially, the standardization of qPCRs with cDNAs and 
probes (endogenous genes and targets) was performed to 
calculate the efficiency of the amplification reactions. In 
the standardization reactions, different concentrations of 
cDNA (pure and in four twofold dilutions: 1:2, 1:4, 1:8, 
and 1:16) were tested. All reactions were performed in 
plates and in triplicate, and the same cDNA (at different 
dilutions) was analyzed at the same time as the different 
probes to construct an efficiency curve to validate the 2−
ΔΔCT computation method. All tests showed efficiency as 
expected (100% ± 10) [49].

The relative quantification of gene expression con-
sisted of amplification of the target gene along with an 
endogenous normalization gene using TaqMan™ assays 
(Applied Biosystems, Foster City, CA, USA) and the Ste-
pOnePLUS™ Real-Time PCR System (Thermo Fisher 
Scientific, Waltham, MA, USA). The reactions were 
performed in singleplex format following the manufac-
turer’s protocol. TaqMan Gene Expression Assays were 
used (Hs00736955_g1 for STING, Hs02786624_g1 for 
cGAS, and Hs02786624_g1 for the endogenous reference 
gene glyceraldehyde-3-phosphate dehydrogenase). The 
primer and probe sequences that make up the assays are 
not available by Thermo Fisher Scientific (Waltham, MA, 
USA). For the reaction, we used 15 µL of 2 × TaqMan® 

Universal PCR Master Mix, 1.5 µL of the 20 × TaqMan 
Gene Expression Assay, 3 µL of cDNA, and 10.5 µL of 
RNase-free water. The thermocycling conditions were 
2 min at 50 °C, followed by 10 min at 95 °C and 1 min at 
60 °C.

The relative quantification of target gene expression 
was calculated using the comparative CT method with 
the formula 2−ΔΔCT, where ∆∆Ct = ∆Ct sample − ∆Ct ref-
erence (Life Technologies, Carlsbad, CA, USA).

CD4+ and CD8+ T cell counts
The CD4+ and CD8+ T cells were counted by flow 
cytometry (BD FACSCalibur™, Becton & Dickinson) with 
the FACSCount™ Reagents monitoring kit, following the 
protocol recommended by the manufacturer (Becton & 
Dickinson, San Jose, California, USA).

Quantification of HIV‑1 plasma viral load
The viral load was quantified by real-time PCR using the 
Sample Purific CV HIV-1 extraction kit (Abbott) and the 
HIV-1 viral load amplification kit (Abbott, Chicago, Illi-
nois, USA). The units used were copies/mL converted by 
log10. Both the CD4+ and CD8+ T cells and the HIV-1 
viral load were quantified according to the standard set 
by the National Network for the Determination of CD4+ 
and CD8+ T cells and Viral Load of the Department of 
HIV/AIDS and Viral Hepatitis of the Ministry of Health.

Plasma quantification of IFN‑I
The levels of IFN-I (IFN-α) were quantified in plasma 
samples with an IFN-α human enzyme-linked immu-
nosorbent assay kit (Thermo Fisher Scientific, 
Waltham, MA USA) according to the manufacturer’s 
recommendations.

Data analysis
All information was entered into a database in Microsoft 
Excel. The evaluation of the frequency of viral load before 
and after ART was evaluated by the G test. The nor-
mality of numerical results was assessed using the Kol-
mogorov–Smirnov test. The T test or the Wilcoxon test 
was applied for the paired analysis of the variables CD4+ 
T cells, CD8+ T cells, CD4+/CD8+ T cell ratio, STING 
expression, cGAS expression, and IFN-α level. Pearson’s 
test or Spearman’s test was used for correlation analysis. 
All tests were performed using the programs GraphPad 
Prism 5.0 and BioEstat 5.0. The quadratic regression 
model was performed using MINITAB 14.0 software. 
Associations with p < 0.05 were considered significant.
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Results
The study group consisted mostly of males (77.08%), and 
the mean age was 32.6 years. Half of the individuals eval-
uated (50%) had at most a complete or incomplete sec-
ondary education, and 64.44% reported having a family 
income between 1 (R$ 1,100) and 3 minimum wages. Of 
the initial 48 individuals, only 33 made continuous use of 
antiretrovirals and could be evaluated after an average of 
12 months of ART. For statistical purposes, the results of 
the paired samples in the first (without ART) and second 
collections (with ART) were used.

In the evaluation of the CD4+ T cell count, a significant 
increase in the number of cells per mm3 was observed—
from 439 to 662 cells/mm3 (p < 0.0001) (Fig.  1a). For 
CD8+ T cells, there was a slight reduction between the 
first and second collections (p = 0.1745), with medians 
of 956 and 928 cells/mm3, respectively (Fig.  1b). The 
CD4+/CD8+ T cell ratio increased significantly with the 
use of ART, with the median increasing from 0.28 to 0.66 
(p < 0.0001) (Fig. 1c).

The HIV-1 viral load decreased between the first and 
second collections. Most individuals (84.85%) started to 
have an undetectable viral load (< 40 copies/mL) after 
using ART (Table 1).

The comparison of the mRNA levels of STING and 
cGAS between the periods evaluated showed that both 

genes were downregulated after 12  months of therapy. 
The median relative STING expression value decreased 
from 2.50 to 0.16 (p = 0.0034) (Fig. 2a). The median cGAS 
level decreased from 6.29 to 0 (p = 0.0001) (Fig. 2b).

The evaluation of the correlation between STING and 
cGAS mRNA levels showed a significantly positive cor-
relation between the two markers before (p < 0.0001; 
Fig.  3a) and after the use of antiretroviral therapy 
(p = 0.0058, Fig. 3b).

The median plasma IFN-α level before ART was 19.57, 
which decreased slightly after 12 months of ART (18.26) 
(p = 0.1558) (Fig. 4).

The correlations between IFN-α level and STING and 
cGAS expression levels showed that there was a positive 

Fig. 1  Evaluation of the levels of a CD4+ T cells, b CD8+ T cells, and c the CD4+/CD8+ T cell ratio before and after ART​

Table 1  Quantification of HIV-1 viral load in individuals before 
and 12 months after ART​

n; number of individuals; *G test

Viral load (copies/mL) Before ART​ After ART​ p*

n (%) n (%)

 < 40 1 (3.03) 28 (84.85)  < 0.0001

41–999 3 (9.09) 3 (9.09)

1000- 10,000 5 (15.15) 0 (0.0)

 > 10,000 24 (72.73) 2 (6.06)
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correlation trend for STING in both periods, but without 
statistical significance (Fig. 5a, b). For cGAS, the correla-
tion with IFN-α showed a positive trend before the use 
of ART and a negative trend after its use (Fig. 5c, d). For 

a better understanding of the relationship between the 
levels of these markers before ART, the quadratic regres-
sion model was performed, which showed in more detail 
the distribution of the samples regarding to the levels of 
IFN-α and STING (r2 = 0.87, p < 0. 0001) and between 
IFN-α and cGAS (R2 = 0.68, p < 0.0001) (Additional 
file 1).

The correlation analyses of the STING and cGAS 
mRNA levels with the CD4+ and CD8+ T cell levels are 
shown in Table 2. Significance was only observed for the 
correlation between STING and CD4+ T cells, which was 
negative before treatment (p = 0.0463). The correlation 
between STING and CD8+ T cells remained positive in 
both analyses and was higher after the beginning of ther-
apy (r = 0.1678; p = 0.3505). Regarding the CD4+/CD8+ 
T cell ratio, the expression of the STING gene showed 
a correlation that went from negative (r = −0.2687, 
p = 0.1306) to positive (r = 0.1270, p = 0.4812) after start-
ing ART. For the cGAS × CD4+ T cell correlation analysis, 
r = −0.2740 and p = 0.1228 were obtained in the first col-
lection, while the results were r = 0.2889 and p = 0.1030 
at the second collection. The results of the correlation of 
cGAS expression with CD8+ T cell count showed a weak 

Fig. 2  Comparison of mRNA levels of a STING and b cGAS before and after ART​

Fig. 3  Correlation between STING and cGAS mRNA levels a before and b after the use of ART​

Fig. 4  Comparison of plasma IFN-α level before and after the use of 
ART​
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correlation before (r = −0.1523, p = 0.4133) and after 
treatment started (r = 0.1770, p = 0.3325). The correla-
tion of cGAS with the CD4 + /CD8 + T cell ratio was not 
significant but went from negative in the first collection 

(r = −0.1824; p = 0.3096) to positive in the 2nd collection 
(r = 0.06033; p = 0.7388).

Discussion
Since the advent of ART for people living with HIV, a sig-
nificant reduction in AIDS-related morbidity and mor-
tality has been observed. The best results are obtained 
from individuals who achieve immune recovery, which 
is mainly represented by the restoration of CD4+ T cell 
levels. Appropriate use of the therapy is also necessary 
for suppression of viral replication. Together, the benefi-
cial effects of ART lead to a better clinical prognosis for 
patients [23, 24].

Studies evaluating the impact of ART are reasonable 
in relating the administration of therapy to the improve-
ment of virologic and immunologic status and the reduc-
tion in the risk of AIDS progression. Such results have 
been observed since the introduction of ART in different 
countries and agree with the results obtained in the pre-
sent study [25–28].

Fig. 5  Correlation between IFN-α level and STING mRNA level a before and b after ART; correlation of IFN-α and cGAS levels c before and d after 
ART​

Table 2  Results of the correlation tests of STING and cGAS gene 
expression with the levels of CD4+ and CD8+ T cells and the 
CD4+/CD8+ T cell ratio before and after ART​

STING cGAS

r p value r p

Before ART​

CD4+ T cells − 0.3493 0.0463 − 0.2740 0.1228

CD8+ T cells 0.0846 0.6398 − 0.1523 0.4133

CD4+/CD8+ T cell ratio − 0.2687 0.1306 − 0.1824 0.3096

After ART​

CD4+ T cells 0.2408 0.1771 0.2889 0.1030

CD8+ T cells 0.1678 0.3505 0.1770 0.3325

CD4+/CD8+ T cell ratio 0.1270 0.4812 0.0603 0.7388
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The effects of ART on innate immune markers are 
still not fully understood, as it is the case for the STING 
and cGAS molecules, which are important elements 
in the IFN-I production cascade that is responsible for 
antiviral action [11, 20]. Therefore, the study of these 
markers is useful to evaluate their roles in HIV-1 infec-
tion, as well as their impact before and after the use 
of ART. Our results show that STING and cGAS gene 
expression decreased after the use of ART. This result 
could be related to the reduction or abolition of viral 
replication induced by ART. A minimum amount of 
nucleic acid accumulation is necessary for activation of 
the cGAS-STING pathway [29], so if viral replication is 
inhibited by therapy, there will most likely be too little 
cDNA to induce the expression of these genes.

The activity of cGAS is essential for the detection of 
CDNs by STING in viral infection [15, 17]. The cor-
relation between STING and cGAS levels showed that 
before therapy there was a greater positive correlation 
than after the use of ART, showing that the infection 
induces the continuous expression of the two restric-
tion factors for activation of innate immunity mecha-
nisms against HIV-1 infection, while the use of HAART 
influenced the reduction in the levels of factors, which 
resulted in a reduction in the correlation between both.

Similar to what was observed in our study, Nissen 
et al. (2014) also reported higher levels of cGAS expres-
sion in individuals who did not use ART [30]. Reverse 
transcriptase inhibitors promote cGAS inhibition 
because they inhibit the formation of viral DNA which 
is crucial for cGAS activity [21]. These results show 
that a high HIV-1 replication rate contributes to cGAS 
gene expression. The evaluation of the impact of ART 
in an Ugandan cohort showed a downregulation of sev-
eral antiviral response genes after starting ART, includ-
ing IRF7 and OAS1, a gene which protein has structural 
and functional homology with cGAS [31]. In a similar 
analysis, Li et  al. (2004) also found a reduction in the 
expression of 26 genes after the use of ART, which, 
like STING and cGAS, were related to IFN production 
[32]. In this sense, the present study corroborates pre-
vious information that ART acts as a downregulator of 
STING and cGAS since it significantly reduces the lev-
els of PAMPs detected by the pathway.

The activity of IFN-I in the control of viral infections 
is a point already widely discussed in the literature. 
Cytokines are considered key effector molecules in the 
innate immune response and have widespread effects 
and the ability to quickly stimulate the entire immune 
system [33]. In viral infections, the main molecular pat-
terns are nucleic acids, which are a strong stimulator of 
the IFN-I response [10].

The activity of IFN-α consists of promoting an antiviral 
state in the host cell through restriction factors that pre-
vent viral replication and by stimulating other immune 
response cells, such as natural killer cells [34]. IFN-α also 
contributes to a sustained immune activation and exac-
erbated inflammatory response, making for an impor-
tant duality for this cytokine and making its role possibly 
controversial in some cases [35]. In the present study, 
plasma levels of IFN-α were slightly lower after the use 
of ART, but not significantly. This may be explained by 
the activity of other pathways acting in a cGAS-STING- 
independent manner, sensors such as RIG-I [36] or TLRs 
(TLR7, TLR9) [10, 37] that might not have been strongly 
affected by ART. The production of type 1 interferons, 
including IFN-α, in the immunopathogenesis of HIV-1, 
in addition to being related to the antiviral response, can 
induce inflammatory mechanisms by persistent immune 
activation and even T-cell exhaustion [35, 38], which may 
contribute to the progression to AIDS.

Studies such as by French et  al. (2009) and Malherbe 
et  al. (2014) found that even with virologic success and 
immune recovery, IFN-α did not undergo a significant 
reduction after the onset of ART [39, 40]. This finding 
agrees with ours and, together, may suggest that the pro-
duction of IFN-α after the use of ART is more related to 
immune activation than to antiviral activity. Therefore, it 
is possible that the use of antiretroviral therapy is not suf-
ficient to completely abolish the production of immune 
activators as inflammatory mediators, even with thera-
peutic success in reducing the viral load and recovering 
CD4+ T cells.

The positive correlation observed between the expres-
sion of STING and cGAS and the levels of interferon can 
be explained by the function of the STING and cGAS 
genes, which are, respectively, an adapter and a sensor 
of innate immunity, parts of an important cascade that 
results in the production of IFN-I against viral infections, 
among other stimuli. With the availability of viral load for 
detection by the sensors, high expression of these genes 
and high IFN-I levels were expected in the evaluation 
before the start of ART [21, 41, 42]. The present study, 
after starting ART, IFN-α did not follow the same pattern 
of significance as STING and cGAS. A possible explana-
tion for this may be the activity of another gene stimu-
lated by interferon, such as Mx2 [43], IRF1 [44], Viperin, 
or the IFIT1, -2, or 3 gene [45], which were not evaluated 
in the present study.

The negative correlation observed between STING and 
CD4+ T cell level can be explained by understanding the 
immunological characteristics of acute HIV-1 infection 
without treatment. Cerboni et  al. (2017) suggested that 
STING plays a downregulator role in the proliferation 
of T lymphocytes [46]. The evaluation of the expression 
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of STING and cGAS with the levels of the other immune 
response markers (CD8+ T cells and CD4+/CD8+ T 
cell ratio) suggests that these are not directly correlated. 
However, STING and cGAS have been associated with 
increased stimulation of responses by CD8+ T cells [47, 
48]. Mechanistic studies should be performed to better 
elucidate this relationship.

Conclusions
The use of ART provided immune recovery and viral sup-
pression to the studied group and indirectly induced the 
downregulation of STING and cGAS. In contrast, ART 
did not affect plasma IFN-α. The expression of STING 
and cGAS were not correlated with plasma IFN-α, which 
suggests that the STING–cGAS pathway is not the main 
cytokine-inducing pathway.
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