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Abstract 

Background:  Risk scores are needed to predict the risk of death in severe coronavirus disease 2019 (COVID-19) 
patients in the context of rapid disease progression.

Methods:  Using data from China (training dataset, n = 96), prediction models were developed by logistic regression 
and then risk scores were established. Leave-one-out cross validation was used for internal validation and data from 
Iran (test dataset, n = 43) was used for external validation.

Results:  A NSL model (area under the curve (AUC) 0.932) and a NL model (AUC 0.903) were developed based on 
neutrophil percentage and lactate dehydrogenase with and without oxygen saturation (SaO2) using the training data‑
set. AUCs of the NSL and NL models in the test dataset were 0.910 and 0.871, respectively. The risk scoring systems 
corresponding to these two models were established. The AUCs of the NSL and NL scores in the training dataset were 
0.928 and 0.901, respectively. At the optimal cut-off value of NSL score, the sensitivity and specificity were 94% and 
82%, respectively. The sensitivity and specificity of NL score were 94% and 75%, respectively.

Conclusions:  These scores may be used to predict the risk of death in severe COVID-19 patients and the NL score 
could be used in regions where patients’ SaO2 cannot be tested.
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Background
Coronavirus disease 2019 (COVID-19), caused by severe 
acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), is a highly contagious and fast-spreading infec-
tious disease. It constitutes a pandemic within only ten 
months and is spreading in many countries worldwide 
with millions of people being affected [1].

The clinical spectrum of COVID-19 ranges from mild 
to critically ill diseases according to the largest cohort 
study (44,672 persons with COVID-19) from China [2]. 
COVID-19 can progress rapidly into acute respiratory 
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distress syndrome (ARDS), multiorgan failure, and even 
death during the later stages in some severe cases [2–6]. 
Clinicians should be aware that some patients may dete-
riorate rapidly after admission.

Since the outbreak of COVID-19, researchers and 
clinicians are acting quickly, but it is difficult to make 
meaningful progress compared to the progression and 
variation rate of this disease.  Unfortunately,  clini-
cally  useful indexes to predict the disease prognosis, 
especially for severe cases, remain unavailable. Previous 
studies have identified that lymphopenia, neutrophilia, 
elevated serum alanine aminotransferase (ALT), aspar-
tate aminotransferase levels (AST), lactate dehydroge-
nase (LDH), D-dimer and C-reactive protein (CRP) all 
may be associated with disease progression and death 
[3–5, 7, 8]. However, there is no easy-to-use risk-scoring 
system for the risk of death in severe patients. Currently, 
clinicians urgently need a convenient risk assessment 
tool to assist them in predicting the risk of hospital mor-
tality in patients with COVID-19. Such a tool would 
allow clinicians to select the optimal timing and method 
of medical intervention for patients and to evaluate the 
effectiveness of treatment strategies.

Therefore, in the current study, we aimed to establish 
straightforward and user-friendly prediction models to 
predict the risk of in-hospital death in severe patients 
with COVID-19, using data from patients with confirmed 
severe COVID-19 who were admitted to hospitals in 
China and Iran.

Methods
Patient population
This multicentric retrospective observational study was 
based on two datasets of severe patients with confirmed 
SARS-CoV-2 infection selected by the same criteria [9] 
from 2 medical centers (West Branch of Union Hospital; 
Tongji Medical College of Huazhong University of Sci-
ence and Technology in China and Tabriz University of 
Medical Sciences in Iran). The patients’ data from China 
were used as the training dataset to establish models 
for predicting the risk of hospital mortality, whereas the 
patients’ data from Iran was used for external validation 
of the prediction models (Fig. 1). All severe patients with 
confirmed SARS-CoV-2 infection in the training and 
test datasets were included if they were adults. Pregnant 
patients and patients with human immunodeficiency 
virus infection were excluded.

This study was approved by the Ethics Committees of 
two participating hospitals in China (Union Hospital, 
affiliated with Tongji Medical College, Huazhong Univer-
sity of Science and Technology) and Iran (Tabriz Univer-
sity of Medical Sciences, approval number: IR. TBZMED. 
REC.1399.008).

Data collection
We reviewed clinical medical records, nursing records, 
and laboratory examinations for all severe patients 
with laboratory-confirmed SARS-CoV-2 infection. The 
severity of disease was classified according to Chinese 
Clinical Guidance for COVID-19 Pneumonia Diag-
nosis and Treatment (7th edition) [9]. We collected 
admission data of these patients including age, sex, 
symptoms (fever, cough, sputum, fatigue, shortness 
of breath, headache, and diarrhea), medical histories 
(chronic cardiovascular disease, chronic pulmonary 
disease, cerebrovascular disease, diabetes, malignancy, 
chronic liver and kidney disease and smoking history), 
signs and symptoms (heart rate, respiratory rate, and 
oxygen saturation (SaO2)), laboratory indexes (white 
blood cells (WBC), neutrophil percentage (NE), lym-
phocyte percentage (LY), hemoglobin (HGB), hema-
tocrit (HCT), platelets (PLT), LDH, total bilirubin 
(Tbil), direct bilirubin (Dbil), ALT, AST, total protein, 
albumin (ALB), activated partial thromboplastin time 
(APTT), prothrombin time (PT), D-dimer, CRP, blood 
urea nitrogen (BUN), serum creatinine (Cr), creatinine 
clearance (CCr), blood glucose, creatine kinase isoen-
zymes (CKMB), high density lipoprotein (HDL), low 
density lipoprotein (LDL), total cholesterol (TC), tri-
glyceride (TG), Lipoprotein, Apolipoprotein A (ApoA), 
Apolipoprotein B (ApoB), serum potassium (K), and 
serum sodium (Na)). HDL, LDL, TC, TG, Lipoprotein, 
ApoA, ApoB, HGB, and HCT were not collected in the 
Iranian population. Information about treatment dur-
ing hospitalization (antiviral therapy, antibacterial ther-
apy, corticosteroids, and immunoglobulin therapy) and 
outcome (in-hospital death) were also collected.

Fig. 1  Flow chart of the study population selection and analysis 
method
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Statistical analysis
Continuous variables are reported as means ± standard 
error (SE). Unpaired t-test or the Mann–Whitney test 
was used to compare two groups of data. Categorical 
variables are expressed as counts and percentages; Chi-
square or Fisher’s exact tests were used for comparisons 
of categorical factors. Feature selection was performed 
to select the suitable variables to establish the prognostic 
model using the information gain method. Information 
gain was calculated by comparing the entropy of the data 
before and after transformation [10]. Factors with attrib-
utes of variables > 0.2 were selected for modeling. The 
establishment of death risk models was based on multi-
variable logistic regression models using training data-
set. The predictive accuracy for the prognostic accuracy 
of hospital mortality of severe patients was calculated 
using receiver operating characteristic (ROC) curves. 
When the sensitivity, specificity and area under the curve 
(AUC) were basically similar between different mod-
els, we selected models for further analysis based on the 
premise of minimizing the number of factors included in 
the model. Validity assessment of the predictive models 
was conducted using internal and external validation. We 
used leave-one-out cross-validation method for inter-
nal validation to limit model over-fitting and to assess 
predictive potential [11]. In external validation, models 
developed in the training dataset were applied on the test 
dataset to assess the predictive performance of models. 
We used calibration plots to show the goodness-of-fit 
of models and plotted nomograms to facilitate the clini-
cal application of both models. The Hosmer–Lemeshow 
tests were also used to assess model goodness-of-fit. In 
addition, in order to simplify the computation of in-hos-
pital death risk estimate, we developed risk scores based 
on the points system from the Framingham Heart Study 
methodology [12]. First, continuous variables (LDH, NE, 
and SaO2) were converted to categories and reference val-
ues for each variable were separately defined. Second, we 
determined the referent predictive factor profile (WiREF) 
by assigning the median value in each category and cal-
culated the difference values between each category and 
the reference value (Wij-WiREF). Third, beta regression 
coefficients (Bi) for continuous variables (LDH, NE, and 
SaO2) were obtained. The point score for each category of 
predictors was estimated using the product of the corre-
sponding beta regression coefficients (Bi) and the differ-
ence values between each category (Wij-WiREF), and the 
reference value (B). The point range was calculated based 
on the points for each predictor. Once the simple point 
system was generated, we evaluated its diagnostic capac-
ity in the train and test cohorts using ROC curves. The 
optimal cut-off values for ROC curves were established 
using the Youden index. All statistical analyses were 

performed using STATA (Version 13.0, IBM, New York, 
USA) and Orange (Version 3.24.1, USA).

Results
Characteristics of the study population
There were 96 patients from China in the training dataset 
and 43 patients from Iran in the test dataset. The mean 
age of patients in the training and test datasets were 
63.47 and 63.37  years, respectively. The patients in the 
two datasets differ in several characteristics at the time 
of admission (Table 1). In total, there are 49 (51%) male 
patients in the training and 30 (69.8%) male patients in 
the test dataset (P = 0.039). There were more patients 
with fever (89.6% versus 46.5%), fatigue (89.6% versus 
42.2%) and diarrhea (20.8% versus 2.3%) in the training 
dataset compared to those in test dataset. In addition, 
patients in the training dataset had faster respiratory 
rates (27.24 versus 22.76) than those in the test dataset. 
The proportion of deaths in the two data sets (32.3% ver-
sus 30.2%) was roughly the same.

Feature selection
Figure 2 shows the results from information gain ranking, 
the top 8 (information gain > 0.2) of the available 60 vari-
ables (LDH, NE, SaO2, LY, NLR, CKMB, D-dimer, and 
CRP) were selected for modeling according to the cri-
teria. As shown in Additional file 1: Fig. S1A, LDH, NE, 
NLR, CKMB, D-dimer, and CRP were significantly higher 
and SaO2, and LY were lower in the severe patients who 
died during hospitalization compared to patients who did 
not die.

Derivation and validation of NSL model and NL model
When used individually to predict the risk of death, 
AUCs of top 8 ranked variables range from 0.763 to 
0.880, sensitivities ranged from 73 to 100%, and specifici-
ties ranged from 51 to 88% (Table 2). Each of these indi-
cators had a good prediction ability for the risk of death, 
but there were some exceptions, such as some patients 
with normal indicators who also died during hospitali-
zation. Therefore, integrated prediction models were 
needed to reduce the defects of a single indicator in pre-
dicting death risk.

In the modeling, we tried to use as few variables as pos-
sible to facilitate clinical application. Because the NE and 
LY had a reciprocal relationship and integrated models 
were based on the logistic regression method, we estab-
lished three model groups depending on whether the NE, 
LY, or neutrophils/lymphocytes ratio (NLR) was added 
to the model. AUCs of all integrated models ranged from 
0.903 to 0.948, sensitivities ranged from 77 to 97%, and 
specificities ranged from 77 to 97% (Table  2). The inte-
grated model combined all top 8 variables (AUC 0.945; 
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sensitivity 97% and specificity 83%), the NSL model 
combinied NE, SaO2 and LDH (AUC 0.932; sensitiv-
ity 97% and specificity 78%; Additional file  1: Fig. S1b), 
and the NL model combined 2 variables, NE and LDH 
(AUC 0.903; sensitivity 94% and specificity 82%; Addi-
tional file 1: Fig. 1b) all had high sensitivity and specificity 
in predicting the risk of death. Considering the need for 
convenient clinical application and the regions with less-
advanced medical care level, we selected the NSL model 
and NL model for validation in the test dataset. The NL 
model could be used in regions where patients’ SaO2 con-
centrations cannot be tested regularly.

Compared with the training dataset, the NSL model 
(AUC 0.910; sensitivity 92% and specificity 96%) and NL 
model (AUC 0.871; sensitivity 92% and specificity 82%) 
both provided similarly accurate predictability of in-
hospital death in the test dataset (Table 2 and Additional 
file 1: Fig. 1c).

Nomogram prediction for in‑hospital death of severe 
patients
In order for clinicians to easily calculate the risk of mor-
tality using the NSL model or NL model, we created two 
nomograms to provide graphical depictions of all indi-
cators in the NSL and NL models, respectively (Fig.  3a, 
b). In both the training and test datasets, the calibra-
tion plots of nomograms were consistent between the 

predicted risk and the observed probability of death 
(Fig.  3c–f). The Hosmer–Lemeshow tests for NSL 
model and NL model were not significant (P = 0.47 and 
P = 0.45), suggesting the NSL model and NL model were 
correctly specified for the prediction of in-hospital death 
from COVID-19.

Development of risk scoring system for predicting 
in‑hospital death
In addition to providing a nomogram to help clinicians 
predict the mortality risk of severe patients, we also 
developed two risk scoring systems based on NSL model 
and NL model. As shown in Table 3, simple point systems 
were developed based on the logistic regression coeffi-
cients (Additional file  1: Table  S1) and reference values 
for each significant risk factor (Table  3). The NSL risk 
score included NE (16 points), SaO2 (9 points), and LDH 
(9 points). The total points ranged from 0 to 34, and with 
increasing total points, the risk of death increased. Points 
of 0–13 were associated with a less than 10% risk of 
death, points of 14–20 with a 10–50% risk of death, and 
points above 20 were associated with an extremely high 
risk of death over 50%. The cut-off of the NSL risk score 
for the prediction of death in training dataset is 15 (sensi-
tivity 94% and specificity 82%, Additional file 1: Table S2). 
The AUCs of the NSL risk score were 0.928 and 0.901 in 
the training and test dataset, respectively. In addition, 

Table 1  Clinical characteristics of the severe patients with COVID-19

Variables Training dataset (China data) n = 96 Test dataset (Iran data) n = 43 P value

Age (years), mean (SE) 63.47 (1.36) 63.37 (2.70) 0.972

Male, n (%) 49 (51.0) 30 (69.8) 0.039

Smoking history, n (%) 1 (1.0) 2 (4.7) 0.064

Symptoms on admission, n (%)

 Fever 86 (89.6) 20 (46.5)  < 0.001

 Cough 78 (81.3) 23 (53.5) 0.222

 Fatigue 86 (89.6) 27 (42.2)  < 0.001

 Shortness of breath 70 (72.9) 24 (55.8) 0.983

 Headache 17 (17.7) 4 (9.3) 0.453

 Diarrhea 20 (20.8) 1 (2.3) 0.017

Coexisting disorder, n (%)

 Hypertension 33 (34.4) 12 (27.9) 0.748

 Diabetes 16 (16.7) 8 (18.6) 0.296

 Chronic obstructive pulmonary disease 3 (3.1) 2 (4.7) 0.444

 Cerebral infarction 1 (1.0) 1 (2.3) 0.42

 Coronary heart disease 10 (10.4) 0 0.057

 Chronic kidney disease 3 (3.1) 1 (2.3) 0.768

 Chronic liver disease 0 0 –

Respiratory rate, mean (SE) 27.24 (0.57) 22.76 (1.09)  < 0.001

Heart rate, mean (SE) 92.89 (1.749) 90.34 (1.88) 0.323

In-hospital deaths, n (%) 31 (32.3) 13 (30.2) 0.809
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the NL risk score included NE (16 points) and LDH (9 
points). The score ranged from 0 to 25. The AUCs of the 
NL risk score were 0.895 and 0.857 in the training and 
test dataset, respectively. Points of 0–9 were associated 
with a less than 10% risk of death, points of 10–15 with 
a 10–50% risk of death, and points above 16 were associ-
ated with an extremely high risk of death over 50%. The 
cut-off of the NL risk score for the prediction of death in 
training dataset is 12 (sensitivity 94% and specificity 75%, 
Additional file 1: Table S2). In clinical practice, clinicians 
can calculate the risk scores of each patient at admission 
based on the points provided in Tables 3 and 4.

Discussion
The NSL score and NL score described in this study are 
easy to understand and use. These two risk scores make 
it easy for clinicians to predict the risk of death in severe 
patients based on empirical data from patients and avoid 
the influence of personal bias in the course of evalua-
tion. In some regions where medical resources are scarce, 
the NL score enables medical staffs to predict the risk of 
death of severe patients with only NE and LDH at the 
time of admission, which will greatly improve the effi-
ciency of medical resource allocation and patient care. 
The NSL score and NL score were developed in a data-
set of Chinese patients and validated in another dataset 
of Iranian patients. There were several differences in the 
clinical characteristics of the severe patients in the train-
ing and test datasets, but this suggests our risk scor-
ing system is robust, as it provides similar predictability 
across these different patient populations.

Lymphopenia, neutrophilia, LDH, D-dimer and CRP 
may be related to the progression of COVID-19 dis-
ease according to previous studies [3–5, 7, 8]. Among 
these factors, elevated D-dimer and lymphopenia have 
been reported to be associated with death [3, 4, 7]. An 
SaO2 rate below 93% (normal range is 95% to 100%) has 
long been considered a sign of underlying hypoxia and 
impending organ failure [13, 14]. For COVID-19, SaO2 
is also a good indicator for the disease progression [15], 
which is also confirmed by our models. A previous study 
found that higher sequential organ failure assessment 
(SOFA) score, older age, and D-dimer greater than 1 μg/
mL at admission were associated with increased risk of 
death, which could help medical staffs assess the progno-
sis of patients [3]. In addition, Ji et al. established a risk 
score (CALL) based on patients’ age, lymphocyte count, 
serum LDH levels and comorbidities at admission, which 
could help medical staffs to identify patients with a high 
risk of disease progression [5]. Outside of the CALL risk 
score to predict risk of disease progression, clinicians 
lack a relevant scoring system to quantitatively predict 
the risk of death in severe patients. This may lead to an 

Fig. 2  Feature selection to find variables with respect to the 
hospital mortality of severe patients. SaO2 oxygen saturation, 
WBC white blood cells, NE neutrophil percentage, LY lymphocyte 
percentage, NLR neutrophils/lymphocytes ratio, HGB hemoglobin, 
HCT hematocrit, PLT platelets, LDH lactate dehydrogenase, Tbil total 
bilirubin, Dbil direct bilirubin, ALT alanine aminotransferase, AST 
aspartate amino transferase, ALB albumin, APTT activated partial 
thromboplastin time, PT prothrombin time, CRP C-reactive protein, 
BUN, blood urea nitrogen, Cr serum creatinine, CCr creatinine 
clearance, CKMB creatine kinase isoenzymes, HDL high density 
lipoprotein, LDL low density lipoprotein, TC total cholesterol, TG 
triglyceride, ApoA Apolipoprotein A, ApoB Apolipoprotein B, K serum 
potassium, Na serum sodium
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Table 2  Predictive capacity of the factors and integrated models for the risk of hospital mortality in severe patients with COVID-19

LDH lactate dehydrogenase, NE neutrophil percentage, SaO2 oxygen saturation, LY lymphocyte percentage, NLR neutrophils/lymphocytes ratio, CKMB creatine kinase 
myocardial bound, CRP C-reactive protein, AUC​ area under the curve

Variable AUC​ 95%CI SE Sensitivity (%) Specificity (%)

Training data from China cohort

 LDH (U/L) 0.880 0.813–0.948 0.034 97 71

 NE (%) 0.879 0.812–0.946 0.034 84 82

 SaO2 (%) 0.849 0.758–0.940 0.046 87 78

 LY (%) 0.852 0.776–0.929 0.039 77 80

 NLR 0.858 0.783–0.933 0.038 81 82

 CKMB (U/L) 0.829 0.746–0.912 0.042 87 69

 D-dimer (μg/mL) 0.763 0.641–0.885 0.062 73 88

 CRP (μg/mL) 0.807 0.723–0.892 0.043 100 51

Integrated models

All variables with information gain > 0.2

 LDH + NE + SaO2 + LY + NLR + CKMB + D-dimer + CRP 0.945 0.897–0.992 0.024 97 83

NE was selected for modeling

 LDH + NE + SaO2 + CKMB + D-dimer + CRP 0.945 0.900–0.989 0.023 93 84

 LDH + NE + SaO2 + CKMB + D-dimer 0.942 0.898–0.987 0.023 97 78

 LDH + NE + SaO2 + CKMB 0.937 0.887–0.988 0.026 83 94

 LDH + NE + SaO2 (NSL risk score) 0.932 0.884–0.981 0.025 97 78

 LDH + NE (NL risk score) 0.903 0.843–0.963 0.031 94 82

LY was selected for modeling

 LDH + SaO2 + LY + CKMB + D-dimer + CRP 0.948 0.904–0.992 0.022 97 84

 LDH + SaO2 + LY + CKMB + D-dimer 0.944 0.901–0.987 0.022 86 88

 LDH + SaO2 + LY + CKMB 0.932 0.880–0.984 0.026 97 77

 LDH + SaO2 + LY 0.934 0.886–0.982 0.025 90 88

 LDH + LY 0.903 0.843–0.964 0.031 90 82

NLR was selected for modeling

 LDH + SaO2 + NLR + CKMB + D-dimer + CRP 0.930 0.866–0.995 0.033 83 95

 LDH + SaO2 + NLR + CKMB + D-dimer 0.945 0.901–0.989 0.022 79 95

 LDH + SaO2 + NLR + CKMB 0.933 0.882–0.983 0.026 77 97

 LDH + SaO2 + NLR 0.933 0.883–0.971 0.025 87 88

 LDH + NLR 0.919 0.866–0.971 0.027 90 82

LDH wasn’t selected for modeling

 NE + SaO2 0.919 0.865–0.972 0.027 97 78

Test data from Iran cohort

 LDH (U/L) 0.746 (0.574–0.919) 0.0881 77 70

 NE (%) 0.851 0.719–0.984 0.068 85 82

 SaO2 (%) 0.869 0.702–1.000 0.085 85 97

Combined models

 LDH + NE + SaO2 (NSL risk score) 0.910 0.758–1.000 0.077 92 96

 LDH + NE (NL risk score) 0.871 0.734–1.000 0.071 92 82

Fig. 3  Nomograms for integrated models to predict hospital mortality and d the corresponding calibration plots. Nomgrams of the NSL model (a) 
and NL model (b) to estimate the risk of death in severe patients with COVID-19. Calibration plot showing the probability of death. Plots for NSL 
model in training (c) and test dataset (d). Calibration plots for NL model in training (e) and test dataset (f). The nomogram-estimated mortality is 
plotted on the x-axis, and the actual mortality is plotted on the y-axis. The diagonal dotted line is a perfect estimation by an ideal model. The solid 
lines are the performance of the nomogram, and closer alignment with the dashed diagonal lines indicates a better estimate

(See figure on next page.)
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Table 3  Algorithm to estimate risk for hospital mortality using total points for risk scores with logistic regression analysis in the severe 
patients with COVID-19 from training dataset

Wij, reference value for each category of risk factors in risk score; WiREF, the base category for each risk factor was used as the basic value for that factor and assigned 
0 point. Bi, the regression coeffcient of each risk factor from logistic regression; B, the smallest regression units or the smallest units divided by some constant (B = 0.3 
for NSL risk score and B = 0.4 for NL risk score)

Variables Categories Reference value (Wij) Bi Regression units Βi 
(Wij—WiREF)

Points assigned 
Βi (Wij—
WiREF)/B

NSL risk score (NE +  SaO2 + LDH)

 NE (%) 0.127

 ≤ 60 55 (WiREF) 0.000 0

60.1–70 65 1.270 4

70.1–80 75 2.540 8

80.1–90 85 3.810 12

 ≥ 90.1 95 5.080 16

 SaO2 (%) -0.175

100–96 98 (WiREF) 0.000 0

95–91 93 0.875 3

90–86 88 1.750 6

 ≤ 85 83 2.625 9

 LDH (U/L) 0.003

 ≤ 221 171 (WiREF) 0.000 0

222–321 271 0.300 1

322–421 371 0.600 2

422–521 471 0.900 3

522–621 571 1.200 4

622–721 671 1.500 5

722–821 771 1.800 6

822–921 871 2.100 7

922–1021 971 2.400 8

 ≥ 1022 1071 2.700 9

NL risk score (NE + LDH)

 NE (%) 0.158

 ≤ 60 55 (WiREF) 0.000 0

60.1–70 65 1.580 4

70.1–80 75 3.160 8

80.1–90 85 4.740 12

 ≥ 90.1 95 6.320 16

 LDH (U/L) 0.004

 ≤ 221 171 (WiREF) 0 0

222–321 271 0.400 1

322–421 371 0.800 2

422–521 471 1.200 3

522–621 571 1.600 4

622–721 671 2.000 5

722–821 771 2.400 6

822–921 871 2.800 7

922–1021 971 3.200 8

 ≥ 1022 1071 3.600 9
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underestimation of the risk of death in some severe 
patients, resulting in delays in treatment and unnecessary 
mortality.

We utilized the feature selection method of machine 
learning and also considered the needs of clinicians to 
create our predictive models with the available data. We 
established two risk scores (NSL score and NL score) 
based on NE, SaO2 with and without LDH concentra-
tion at admission. An NSL score ≤ 11 is associated with 

a risk of death of less than 5%, whereas NSL score > 15 
and particularly > 20 indicated an increased risk of death 
in patients; requiring urgent symptomatic treatment and 
careful surveillance for these patients. In particular, the 
cut-off point of 20 in NSL score offered 71% sensitivity 
and 94% specificity for death risk prediction in training 
datasets and 92% sensitivity and 82% specificity in the 
test dataset. For some regions without appropriate access 
to tests for SaO2 concentrations in patients, the NL score 
can also be used to predict the risk of death with high risk 
prediction accuracy. NL score ≤ 8 is associated with a risk 
of death of less than 5%, whereas NL score > 9 and NL 
score > 14 indicated the risk of death exceeding 10% and 
40%, respectively.

Our study has a few limitations. First, the sample size is 
relatively small, especially the test dataset from Iran. Sec-
ond, due to the limitations of data, we could not analyze 
the effects of different medical interventions on prog-
nosis. Finally, the predictive capacity of the NSL and NL 
risk scores for the risk of death in patients with COVID-
19 may be affected by the concentration of LDH and the 
proportion of patients with higher concentrations. In 
our study, the analyzer machines and methods used to 
determine serum LDH concentrations are different in 
China and Iran, and the normal range of LDH concentra-
tions is slightly different. In China, LABOSPECT 008 α 
Hitachi Automatic Analyzer (Hitachi High-Technologies 
Corporation, Japan) was applied to detect serum LDH 
concentrations (normal range < 245 U/L), while in Iran, 
LDH Cytotoxicity Detection Kit (Roche, Germany) was 
used (normal range < 480 U/L). The serum LDH ranged 
from 121 to 1673 U/L in the Chinese cohort of patients 
with COVID-19 and the serum LDH ranged from 189 to 
1642 U/L in the Iranian cohort. Although the concentra-
tion range of LDH was roughly the same in both cohorts, 
the proportion of patients with the concentration of LDH 
above 721 U/L in Iranian cohort was higher than that in 
Chinese cohort (37.2% vs. 9.4%), which may explain why 
the NSL and NL risk scores have higher specificity for 
predicting risk of death when using higher cut-off values 
(NSL > 20 and NL > 15), but significantly lower specific-
ity when selecting lower cut-off values (NSL > 15 and 
NL > 12) in the Iranian cohort. In addition, we evaluated 
the predictive capacity of LDH, NE, and SaO2 for risk 
of death in the Iranian cohort. Obviously, the predic-
tive capacity of LDH for the risk of death in the Iranian 
cohort was lower than that in the Chinese cohort (0.764 
vs. 0.880), which was not found in predictive capacity of 
NE and SaO2. The predictive capacity of the NSL and NL 
risk scores for the risk of death in patients with COVID-
19 may be affected by the concentration of LDH and the 
proportion of patients with higher concentrations. There-
fore, clinicians should be cautious in using the NSL and 

Table 4  The risk of in-hospital death corresponding to the sum 
of points obtained from integrated models

NSL risk score (NE + SaO2 + LDH) NL risk score (NE + LDH)

Point of total Estimate of risk of 
hospital mortality 
(%)

Point of total Estimate of risk of 
hospital mortality 
(%)

0 0.18 0 0.22

1 0.25 1 0.33

2 0.33 2 0.49

3 0.45 3 0.74

4 0.61 4 1.09

5 0.82 5 1.62

6 1.10 6 2.40

7 1.48 7 3.54

8 1.99 8 5.20

9 2.67 9 7.56

10 3.57 10 10.87

11 4.76 11 15.39

12 6.32 12 21.35

13 8.34 13 28.82

14 10.94 14 37.66

15 14.22 15 47.40

16 18.29 16 57.35

17 23.20 17 66.73

18 28.97 18 74.95

19 35.50 19 81.70

20 42.63 20 86.94

21 50.07 21 90.85

22 57.52 22 93.68

23 64.63 23 95.67

24 71.16 24 97.06

25 76.91 25 98.01

26 81.80

27 85.85

28 89.12

29 91.71

30 93.72

31 95.27

32 96.45

33 97.35

34 98.02
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NL risk scores, and large cohorts are still needed to test 
the predictive ability of these two risk models for mortal-
ity risk of patients with COVID-19.

Conclusions
In conclusion, the NSL score and NL score, which 
are based only on two or three parameters of routine 
blood and biochemical tests at hospital admission, are 
straightforward objective approaches to predict the risk 
of death in severe COVID-19 patients, representing 
simple, reliable and widely applicable scores for pre-
dicting the mortality risk in severe COVID-19 patients.
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