He et al. Virology Journal (2020) 17:68

https://doi.org/10.1186/512985-020-01336-8 V| ro | Ogy J ourna |

REVIEW Open Access

Host shutoff activity of VHS and SOX-like ®
proteins: role in viral survival and immune
evasion

Tiangiong He'*?", Mingshu Wang'?", Anchun Cheng'**'®, Qiao Yang"*?, Ying Wu'*?, Renyong Jia"*?,
Mafeng Liu'*?, Dekang Zhu®?, Shun Chen'*?, Shagiu Zhang'*?, Xin-Xin Zhao'*?, Juan Huang'*?, Di Sun"*",
Sai Mao'*?, Xuming Ou'?3, Yin Wang“m, Zhiwen Xu'??, Zhengli Chen'?3, Lin Zhu'*?, Qihui Luo'??,

Yunya Liu'*?, Yanling Yu'??, Ling Zhang'“?, Bin Tian'”, Leichang Pan'? Mujeeb Ur Rehman'? and

Xiaoyue Chen'*?

Abstract

Background: Host shutoff refers to the widespread downregulation of host gene expression and has emerged as a
key process that facilitates the reallocation of cellular resources for viral replication and evasion of host antiviral
immune responses.

Main body: The Herpesviridae family uses a number of proteins that are responsible for host shutoff by directly
targeting messenger RNA (mRNA), including virion host shutoff (VHS) protein and the immediate-early regulatory
protein ICP27 of herpes simplex virus types 1 (HSV-1) and the SOX (shutoff and exonuclease) protein and its
homologs in Gammaherpesvirinae subfamilies, although these proteins are not homologous. In this review, we
highlight evidence that host shutoff is promoted by the VHS, ICP27 and SOX-like proteins and that they also
contribute to immune evasion.

Conclusions: Further studies regarding the host shutoff proteins will not only contribute to provide new insights
into the viral replication, expression and host immune evasion process, but also provide new molecular targets for
the development of antiviral drugs and therapies.
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Background

The Herpesviridae family comprises over 100 viruses that
can infect a wide variety of species of at least two animal
phyla, the Chordata (mammals, birds, fishes, reptiles, and
amphibians) and the Mollusca (oysters), with each mem-
ber consisting of an enveloped icosahedral capsid contain-
ing a proteinaceous tegument and a dsDNA genome [1].
The Herpesviridae family is divided into three subfamilies
(Alphaherpesvirinae, Betaherpesvirinae, and Gammaher-
pesvirinae) based on their biological properties and gen-
ome sequences [2]. The Alphaherpesvirinae subfamily
contains HSV-1/2; the Betaherpesvirinae subfamily con-
tains human cytomegalovirus (HCMV) and human
herpesvirus-6A and 6B (HHV-6A and -6B) [3]; and the
Gammaherpesvirinae ~ subfamily  contains  Kaposi’s
sarcoma-associated herpesvirus (KSHV), Epstein-Barr
virus (EBV) and murine gammaherpesvirus 68 (MHV68)
[4]. A characteristic feature that is common to all herpes-
virus infections is the establishment of latent infections, a
state from which the virus can be reactivated and result in
recurring disease [2].

Host shutoff, on the one hand, means directly redu-
cing the levels of cellular mRNAs or preventing their as-
sociation with ribosomes and translation initiation
factors that can facilitate the translation of viral mRNAs
[5]. A common theme is that different viruses encode a
few proteins that block host gene expression by promot-
ing global mRNA degradation, such as the virion host
shutoff (VHS) protein of HSV-1/2 [6], SOX and its ho-
mologs in gammaherpesviruses [7, 8], Nspl of SARS-
coronaviruses [9] and PA-X from influenza A virus [10].
In cells, each protein targets host RNA polymerase II
(Pol II) transcripts for cleavage and requires host Xrnl
to complete RNA degradation, although the mechanism
of targeting and the position of the primary cleavage dif-
fers [11, 12]. On the other hand, HSV-1 ICP27 interacts
with splicing proteins and inhibits cellular pre-mRNA
splicing early after infection, resulting in a decrease in
the splicing of products into cellular translation machin-
ery; therefore, HSV-1 ICP27 also contributes to the
shutoff of host protein synthesis [13, 14]. However, beta-
herpesviruses, such as HCMV, do not shut off host
macromolecular synthesis [15]. In this review, we will
discuss host shutoff mechanisms of HSV-1 and members
of the Gammaherpesvirinae subfamilies and their roles
in immune evasion.

Main text

mRNA processing

HSV infection leads to suppression of cellular protein
synthesis through at least two distinct inhibitory path-
ways. In the first pathway, delivery of the VHS protein,
encoded by the HSV UL41 gene, into the cytoplasm
after fusion of the viral envelope with the host cell
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membrane. This event leads to an increase in the global
mRNA degradation rate in the cytoplasm, and the pre-
cipitous decrease in the levels of most host mRNAs cur-
tails the synthesis of the corresponding proteins [16].
VHS and its homologs are only present in the genomes
of Alphaherpesvirinae subfamily members, and as an
endoribonuclease with similar substrate specificity to
RNase A, VHS triggers the rapid shutoff of host cell pro-
tein synthesis and disrupts preexisting polyribosomes
[17]. The pseudorabies virus (PRV) UL41 gene-encoding
protein is the homologue of the HSV UL41 protein and
has a similar shutoff function [18]. In contrast, the
varicella-zoster virus (VZV) open reading frame 17
(ORF17) protein, a homolog of HSV UL41 protein, can
also induce RNA cleavage, but to a substantially lesser
extent than HSV-1 VHS and has no major function in
the VZV-mediated delayed host shutoff [19]. Interest-
ingly, ORF17 protein is crucial for VZV replication at
37°C [20]. Thus, VHS likely plays a fundamental and
conserved role in the biology of infections caused by
alphaherpesviruses, but its effect in different viral infec-
tions is distinct. In addition, VHS reduces dsRNA levels
by reducing the potential for generating dsRNA and dir-
ectly removing dsRNA after its formation [21]. This
novel function would be important in immune evasion
and may exist in other alphaherpesviruses.

Second, HSV-1 ICP27 has role in pre-mRNA polyade-
nylation and splicing that inhibits host mRNA matur-
ation [22]. Eukaryotic pre-mRNAs are processed after
synthesis in the nucleus and then translated in the cyto-
plasm, although an unusual feature of HSV-1 transcripts
is that the majority are intronless (except ICP22, ICPO,
ICP47, UL15, LAT and gC) and thus do not interact
with the splicing machinery [23]. ICP27 interacts with
and recruits cytoplasmic kinase SR protein kinase 1
(SRPK1) to the nucleus to inhibit host cell splicing, after
which the unspliced host mRNAs in the nucleus cannot
be exported to the cytoplasm for translation, leading to
host protein synthesis shutoff [24]. Recently, ICP27 has
been shown to inhibit the splicing of specific introns and
promote the use of alternative 5" splice sites (ss). Fur-
thermore, ICP27 targets high GC content and cytosine-
rich sequences that are similar to those of HSV genes
spared by the VHS, possibly promoting virus-induced
host shutoff [25]. In addition, transcription termination
affects mRNA production and translation, and HSV-1
induces the disruption of transcription termination of
host genes [26]. HSV-1 ICP27 was recently shown to
block the transcription termination of host genes by
inhibiting mRNA 3" processing. Furthermore, ICP27 can
act as a sequence-dependent activator of mRNA 3’ pro-
cessing to promote efficient transcription termination of
viral transcripts, indicating that HSV-1 ICP27 plays an
important role in host shutoff [27].
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Similar to alphaherpesviruses, gammaherpesviruses
promote host shutoff by inducing widespread cellular
mRNA degradation during the early lytic phase of viral
infection [7, 8, 28]. The KSHV host shutoff RNase is not
homologous to VHS, but is the alkaline exonuclease
ORF37 protein, also known as SOX, a member of the
PD(D/E) XK restriction endonuclease superfamily. While
its homologs in other gammaherpesviruses are also host
shutoff factors, SOX homologs are also present in other
herpesviruses, including those such as HCMV that fail
to inhibit host gene expression [11]. However, the SOX
protein and its homologs (muSOX and BGLF5) in gam-
maherpesviruses possess both exonucleolytic DNase and
RNase activities. These activities are genetically separ-
able, and the shutoff activity does not require DNase
activity, although the processing of DNA and RNA sub-
strates requires the same catalytic center [29].

In contrast to VHS, SOX is not packaged in virion par-
ticles and is expressed with early kinetics [8]. SOX tar-
gets a degenerate motif to degrade many mRNAs in the
cytoplasm [29, 30]. In addition, it induces nascent cellu-
lar mRNAs to undergo poly(A) tail extension (hyperade-
nylation), which prevents the export of nascent nuclear
messages [31, 32]. muSOX continues to accumulate dur-
ing the late stages of the viral replicative cycle and
broadly targets viral mRNAs from all three kinetic clas-
ses, which generally results in a decrease in relevant viral
protein levels at each class [33]. Selective inactivation of
the mRNA degradation activity of muSOX results in
altered protein composition of progeny virions, which
ultimately impacts subsequent rounds of infection by fa-
voring lytic cycle entry over latency [33, 34]. The dele-
tion of BGLF5 results in the accumulation of several
viral proteins during EBV infection and causes nuclear
egress defects [35]. In addition, SOX and its homologs
possess intrinsic RNase activity, but they cannot solely
account for host shutoff in vitro [36].

Although a wide variety of mRNAs are degraded by
viral endonucleases, some mRNAs contain a SOX resist-
ance element (SRE) in their 3’ untranslated region
(UTR) that prevents their degradation by multiple viral
endonucleases, such as CI190RF66, IL-6 and DNA
damage-inducible gene 45 (GADD458) [37-39]. A num-
ber of ribonucleoprotein complex proteins are involved
in this process, for example, nucleolin (NCL) binds the
IL-6 mRNA 3'UTR and elF4H to protect IL-6 mRNA
from degradation [37], although a detailed mechanism
how SREs promote the escape of mRNAs from viral en-
donucleases mediated decay remains unknown. Apop-
tosis enhancing nuclease (AEN) mRNA is also spared
from SOX-mediated decay without a clear protective
element in its sequence [40], and VHS cannot degrade
tristetraprolin (TTP) [41]. These results suggest that
multiple mechanisms can apparently promote mRNA
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escape. However, with the exception of the SREs,
whether some mRNAs involved in the viral or cellular
life cycle are spared viral endonuclease-mediated decay
remains unknown, and these spared mRNAs may be
needed for viral gene expression or to activate the im-
mune response to inhibit viral replication.

Downregulation of host mRNA translation

In eukaryotes, a key factor in translation control is
eukaryotic translation initiation factor 2 (eIF2). The o
subunit of elF2 is phosphorylated by a number of ki-
nases, including protein kinase (PKR), PKR-like endo-
plasmic reticulum kinase (PERK), general control
nonderepressible-2 kinase (GCN2), and heme-regulated
elF2a kinase (HRI), resulting in translation arrest and,
ultimately, a general translational shutoff [42]. This ef-
fect is harmful to viruses that need the host translation
machinery to synthesize viral proteins. However, VHS
blocks PKR activation via its endoribonuclease activity
during the immediate onset of viral infection to counter-
act the activation of elF2 by kinases, and VHS-defective
viruses induce the phosphorylation of elF2a [43, 44]. In
addition, HSV-1 ICP27 inhibits PKR binding to dsRNA
and its autophosphorylation but has no direct effect on
elF2a phosphorylation, potentially by only causing con-
formational changes in PKR [45].

In vitro-translated VHS exhibits endonuclease activity
with no selectivity. Nevertheless, VHS shows a strong
preference for mRNAs in vivo [46], degrading the 5" end
of mRNAs prior to the 3" end, and is targeted to regions
of translation initiation through its interaction with
elF4H [47]. Interestingly, several VHS mutations that ab-
rogate its ability to bind elF4H also abolish its mRNA-
degrading activity, even though the mutant proteins re-
tain endonuclease activity. Interestingly, several point
mutations that abolish its mRNA-degrading activity also
abrogate its ability to bind elF4H, the depletion of which
impedes VHS-mediated degradation [48]. Furthermore,
elF4H switches from cytoplasmic to nuclear localization
during the initial shutdown of translation after viral in-
fection [49]. However, the interaction between VHS and
elF4B or elF4F is not sufficient to induce mRNA decay
[50]. Alternatively, the targeting of VHS may depend
upon its ability to interact with translation factors,
whether the preferred cleavage sites are in regions of
translation initiation or not [51]. However, VHS cleaves
mRNAs close to AU-rich elements (AREs) in their 3’
UTRs by interacting with tristetraprolin (TTP) [52]. The
internal ribosome entry site (IRES) derived from enceph-
alomyocarditis virus (EMCV) or poliovirus acts to
strongly target VHS-dependent RNA cleavage events to
a narrow zone located immediately 3" to the IRES [53].
These two degradation models require neither ribosome
scanning nor interaction with translation initiation
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factors to select the cleavage sites. Unlike VHS, SOX has
no interaction with elF4H and cosediments with 40S
ribosomal subunits, depletes polysomes, and specifically
recognizes mRNAs at an early stage of translation, al-
though the factor(s) involved SOX recruitment to its
mRNA targets remain unknown [32]. During MHV68
infection, because the translation factors are unlimited,
the targeting of viral mRNAs during gammaherpesvirus
infection is not a mechanism to redirect the translation
machinery towards host genes [34].

Cytoplasmic poly (A)-binding protein (PABPC) is a
predominantly cytoplasmic protein that is required for
efficient translation initiation and binds to mRNA
poly(A) tails to enhance mRNA stability, translation effi-
ciency, and quality control in the cytoplasm, in part
through its interactions with the elF4G translation initi-
ation factor [54]. During lytic HSV-1 infection, VHS,
ICP27 and other viral proteins induce the translocation
of PABPC from the cytoplasm to the nucleus [55-57].
In addition, ICP27 associates with PABP and elF4G to
promote translation initiation [58]. SOX and its homo-
logs also relocalize PABPC into the nucleus [30, 57, 59,
60], where intranuclear PABPC accumulation leads to
excessive nuclear mRNAs and a block in the nuclear ex-
port of mRNAs, resulting in restricted protein expres-
sion [57].

Boosting the expression of viral proteins

VHS directly or indirectly enhances the translation of
viral mRNAs. VHS boosts the translation of viral true
late mRNAs in a cell type-dependent manner and then
determines the viral growth phenotype in the respective
cell type, such as Hela cells [61, 62]. First, VHS refines
the transition between the successive expression of viral
IE, E, and late (L) genes to facilitate the turnover of all
kinetic classes of viral mRNAs [63], preventing “mRNA
overload” during the late stages of infection by eliminat-
ing host mRNAs and promoting the decay of viral IE
and E transcripts [64]. In the absence of VHS, the half-
lives of all classes of viral transcripts are dramatically
increased, and the resulting accumulation of viral
mRNAs overwhelms the capacity of the host transla-
tional machinery, leading to functional deficiency of the
L mRNAs that are made during infection. Second, recent
reports have shown that the translational defect ob-
served for L mRNAs in the absence of VHS does not
stem from one or more structural features of the af-
fected mRNAs, since these transcripts accumulate late
during infection [64]. Third, VHS is more sensitive to
unspliced mRNAs than spliced mRNAs, and exon junc-
tion complexes (EJCs) may transiently protect spliced
mRNAs from VHS degradation, causing a modest stimu-
lation in translation and accumulation of spliced mRNA
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[65]. Thus, VHS may also enhance the expression of
these viral genes depending on other functions.

To avoid multiple viral mRNAs being degraded by
VHS at later times of infection in an unrestrained fash-
ion, the viral proteins ICP27, VP13/14, VP16 or VP22
interact with and attenuate VHS RNase activity [66, 67].
Furthermore, the VP16-VP22 complex rescues the nu-
clear retention of VHS mRNA and the VHS-induced nu-
clear retention of late transcripts during HSV-1
infection, allowing for their efficient translation [67, 68].
VP13/14 stabilizes host and viral [E mRNAs and effect-
ively blocks the degradation of E and L mRNAs, but it
has no effect on the processing of AU-rich mRNAs [66,
69]. ICP27 also interacts with VHS, which may impact
the stability of ARE-containing mRNAs, although this
function remains controversial [70]. ICP27 and VP13/14
as nucleocytoplasmic shuttling proteins that can bind
and transport RNA [71, 72], we speculate there are un-
known associations between VHS, mRNA, VP13/14 and
ICP27. And these interactions may also facilitate incorp-
oration of VHS into the tegument of progeny virions.
Unlike alphaherpesviruses, there are few reports regard-
ing other viral proteins that regulate host shutoff-
associated activity in gammaherpesviruses, with the
exception of the EBV protein kinase BGLF4 that antago-
nizes BGLF5-mediated viral gene shutoff [73]. Thus, it is
necessary to continue exploring the viral proteins regu-
late SOX or muSOX activity after gammaherpesvirus
infection.

In addition, ICP27 facilitates viral RNA export by
recruiting mRNA export adaptors to viral replication
sites and binding intronless viral mRNAs through its
RGG domain [22, 74-78]. ICP27 promotes expression of
the full-length gC protein and tightly regulates the ex-
pression of HSV-2 monocistronic ICP34.5 mRNA by
inhibiting splicing and activating a cryptic polyadenyla-
tion signal (PAS) in new introns [23]. The PRV UL54
protein is a homolog of HSV-1 ICP27 and has a drastic
impact of the genome-wide expression of PRV genes, es-
pecially on the transcription of the true late genes [79].
These studies have provided insights into the crucial role
of ICP27 and its homologs in selectively regulating viral
mRNA nuclear export to favor viral RNA transcription
and protein translation.

Immune evasion

The detection of microbial pathogens is an essential first
step in mounting an innate immune response to infec-
tion. Pattern recognition receptors (PRRs) recognize
pathogen-associated molecular patterns (PAMPs) and
trigger the production of numerous host defense mole-
cules, including interferons (IFNs), proinflammatory cy-
tokines and chemokines [80]. In addition, IFNs can be
classified into three groups (types I, II and III), where
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IFN-I (IEN-a/p) and III are crucial antiviral factors that
stimulate the synthesis of a variety of antiviral effector
molecules [81]. A number of innate immune mecha-
nisms are invoked following infection, and herpesviruses
in turn takes different measures to neutralize these host
responses, with host shutoff proteins playing crucial
roles in escaping innate immune.

VHS as an IFN-a/p resistance factor

VHS has been identified as an IFN-a/f resistance factor
that is essential for viral survival. Primary murine embry-
onic fibroblasts (MEFs) infected with HSV-2 AVHS mu-
tants were observed to produce >50-fold more IFN-a/p
than cells infected with wild-type and VHS-rescued vi-
ruses. In addition, pretreatment of MEFs with IFN-I
inhibited the replication of HSV-2 AVHS more than that
of wild-type and VHS-rescued viruses, indicating that
VHS interferes with activation of the IFN-a/B-induced
antiviral response. The authors further examined
whether VHS interferes with key mediators of the IFN-
a/p response, PKR and RNase L [82]. Furthermore,
HSV-1 VHS-defective viruses have been shown to in-
duce increased, physiologically active levels of IFN and
increased amounts of ISGs. VHS-defective HSV-1 vi-
ruses have increased susceptibility to IFN in cells [44],
but not in culture, and the virulence of these viruses is
not restored in IFN-a/B/y R/ mice [83]. The HSV-2
VHS protein is ~ 40-fold more active than that of HSV-1
and has a more crucial role in HSV-2 than its HSV-1
counterpart in promoting resistance to the IFN response
and plays an important role in damaging the host
defense mechanism. In addition, Bovine herpesvirus 1
(BHV-1) ICP27, as a potent IFN-p antagonist, interferes
with the promoter activity of IFN-f1 and IFN-B3 [84].

Inhibition of cellular PRR-mediated antiviral responses
Cyclic-GMP-AMP (cGAMP) synthase (cGAS), the most
recently identified cytosolic DNA sensor, plays an im-
portant role in IFN-I responses against DNA viruses, in-
cluding HSV-1 and KSHV. Interestingly, HSV-1 UL41
degrades cGAS mRNAs via its RNase activity to evade
the cGAS/STING-mediated DNA-sensing pathway [85].
Furthermore, ICP27 interacts with the TBK1-STING sig-
nalosome in the cytoplasm through its RGG motif to in-
hibit interferon regulatory factors 3 (IRF3) activation
and IFN production through the cGAS-STING pathway
in macrophages [86]. In addition, HSV-2 ICP27 also dir-
ectly associates with IRF3 and inhibits its phosphoryl-
ation and nuclear translocation, resulting in the
inhibition of IFN-P production [87].

IFI16 was identified as a DNA sensor that also signals
through STING-TBK1 to detect viral DNA in both the
cytoplasm and nucleus [88]. Interestingly, nuclear IFI16
can assemble inflammasomes during infection by KSHV
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and HSV-1, leading to the secretion of proinflammatory
interleukins [89, 90]. HSV-1 rapidly blocks IFI16-
mediated immune responses during infection by catalyz-
ing its degradation, in part via the contribution of ICPO
[90]. However, ICPO is not necessary or sufficient for the
loss of IFI16 in a tumor-derived cell line, and the ICPO-
independent loss of IFI16 in HeLa cells is dependent in
part on VHS RNase activity [91].

TLRs and RLRs are also fundamental sensor molecules
of the host innate immune system that detect conserved
molecular signatures of a wide range of microbial patho-
gens and initiate innate immune responses via distinct
signaling pathways [92]. The HSV-2 VHS protein in-
hibits TLR3 and RIG-1/Mda-5 as well as TLR2-mediated
antiviral pathways for sensing dsRNA and effectively
suppresses IFN- antiviral responses in human vaginal
epithelial cells (ECs) [93]. ICP27 also inhibits signaling
downstream of the RIG-I adaptor protein MAVS and
the TLR adaptor protein TRIF, while the KSHV ORF57
protein inhibits TLR3 phosphorylation [45, 94]. In
addition, the EBV lytic-phase protein BGLF5 contributes
to downregulation of TLR9 levels through RNA degrad-
ation [95] (Fig. 1).

Counteracting I1SGs

IEN activates the Janus kinase signal transducer and acti-
vator of transcription (JAK/STAT) signaling pathway,
resulting in the downstream expression of hundreds of
antiviral host effector proteins called ISGs [97, 98]. How-
ever, HSV-1 infection restricts the expression of some
ISGs through various strategies. For instance, ICP27
downregulates IFN-induced STAT1 phosphorylation
and promotes inhibition of STAT1 nuclear accumulation
[99]. VHS partially inhibits JAK1 and STAT2 by degrad-
ing their mRNAs [100], and the VHS homolog BHV-1
ULA41 protein directly binds and cleaves STAT1 mRNA
[101]. In addition, VHS degrades some ISG mRNAs
through its RNase activity to counteract their antiviral
activity, including IFIT3 [102], viperin [103], tetherin
[104], ZAP [105], and CH25h [106] (Table 1).

Inhibition of proinflammatory chemokines and cytokines

The VHS protein also suppresses proinflammatory che-
mokines and cytokines, such as interleukin (IL)-1p, IL-8,
macrophage inflammatory protein-la (MIP1la) [107],
and alpha-thalassemia/mental retardation syndrome X-
linked (ARTX), an effector of the innate immune re-
sponse [108], which inhibits major histocompatibility
complex (MHC) class I/II and quenches activation of
some antigen-presenting dendritic cell (DC) subtypes
[93]. Thus, VHS is a crucial determinant of HSV viru-
lence. Similar to VHS, the BGLF5 and SOX proteins
downregulate the expression of multiple immune com-
ponents and reduce the levels of lipid antigen-presenting
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CD1d and HLA class I /II molecules [109]. However, be-
cause this activity is redundant with other EBV proteins
that specifically combat HLA processing and transport,
it appears to have only a small effect on CD8+ T cell
recognition [110, 111]. Selective inactivation of muSOX
mRNA degradation activity leads to a severe attenuation
of MHV68 in B cells during the phase of peak latency
establishment [112]. In addition, ICP27 inhibits p65
acetylation and NF-kB transcriptional activity by repres-
sing Daxx sumoylation [113] (Table 2).

Suppression of the UPR

Eukaryotic cells respond to various types of stresses
caused by changes in the extracellular environment, and
the accumulation of unfolded and misfolded proteins in
the endoplasmic reticulum (ER) causes ER stress that

Table 1 Inhibition of ISGs
Pathogen ISG
VHS HSV-1 IFIT3

Protein Mechanism

MRNA degradation
Viperin
Tetherin
CH25h
hZAP
PKR
TNF-a

VHS PRV MRNA degradation

activates the unfolded protein response (UPR) via three
ER transmembrane receptors: PERK, inositol-requiring
enzyme 1 (IRE1) and activating transcription factor 6
(ATF6) [114]. The kinase activity of IREla leads to acti-
vation of c¢-Jun N-terminal kinases (JNKs) during HSV-1
infection, where ICP27 activates the stress-responsive
JNKs to enhance viral replication [115]. VHS suppresses
the IRE1/XBP1 signal pathway by directly reducing the
accumulation of XBP1 mRNA [116]. Thus, UPR signal-
ing clearly has an important role in immunity and in-
flammation [117]. The UPR can also support important
antiviral responses, activate proinflammatory cytokines
and cytokines [118]. Therefore, we speculate that VHS
inhibits the UPR pathway to cellular resources for viral
replication as well as to promote evasion of the immune
response activated by UPR to ensure viral survival. How-
ever, unlike VHS, KSHV SOX protein does not affect
the expression of UPR genes [119]. These results indi-
cate that different herpesviruses have evolved distinct
mechanisms to regulate the UPR to promote viral
replication.

SGs disassembly

Stress granule (SG) formation can interfere with viral
replication, as herpesviruses require the host translation
machinery to synthesize viral proteins. Interestingly, an
HSV AVHS mutant cannot disrupt arsenite-induced SG
formation, an ability that is restored by VHS comple-
mentation, and this VHS-mediated disruption also
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Table 2 Host shutoff-associated proteins inhibit various
proinflammatory cytokines and cytokines

Protein Pathogen Target Mechanism
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occurs in the absence of other viral proteins [120]. Fur-
thermore, VHS endoribonuclease activity is required to
disrupt SG formation, which, in concert with Xrnl exo-

protein nuclease activity, promotes the destruction of mRNAs
VHS  HSV-1 IL-1B, IL- mRNA degradation present in existing SGs, leading to their disassembly
8 [121, 122]. Some reports have suggested that SGs act as
MIP-Ta platforms that sense viral molecular patterns and initiate
NF-KB downstream signaling to promote antiviral responses, as
MHC-I/1I SGs can promote PKR activation in HSV-1 infection, al-
RNase L though the ability of VHS to suppress IFN is unrelated
JAKT to its ability to inhibit PKR activation and SG formation
[121]. Furthermore, KSHV SOX also inhibits arsenite-
STAT2 induced SG formation, and HSV-1 ICP27 blocks the
S0Cs3 PKR/elF2a/SG pathway to overcome host antiviral re-
VHS  BHV-1 MHC-/Il mRNA degradation sponses, an activity that its EBV homolog EB2 lacks [45].
BGLF5 EBV HLA/I  mRNA degradation Thus, further exploration of the relationships among of
DId SGs, IEN and ICP27 will be very meaningful (Fig. 2).
ICP27  HSV-1 NF-KB Inhibition of NF-kB transcriptional activity .
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P27 HSVA 065 Inhibition of p6S acetylation Herpesviridae famﬂy.members are among the most ubiqui-
o ) tous and successful viruses known and are thought to have
ICP27  HSV-1 STAT1 Inhibition of STAT-1 phosphorylation and . . . .
nuclear accumulation coevolved with their hosts. The success of herpesviruses is
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Fig. 2 VHS, ICP27 and SOX reduce mRNA abundance to shutoff the expression of host proteins through different strategies. VHS and SOX degrade
mRNA via their RNase activity; ICP27 inhibits host pre-mRNA polyadenylation and splicing; and SOX/muSOX proteins induce nascent host mRNA
hyperadenylation. In addition, these three proteins alter the localization of cytoplasmic poly (A) binding protein (PABPC), leading to limited mRNA
export from the nucleus to the cytoplasm. VHS suppresses the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, and protein
kinase R (PKR) phosphorylates eukaryotic translation initiation factor 2a (elF2a). VHS and SOX also inhibit the subsequent formation of stress granules
(SGs) to favor viral replication (refer to [123])
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has elucidated these protein-associated host shutoff and im-
mune invasion mechanisms, much remains unclear regard-
ing the biogenesis, characteristics, and adaptive responses of
shutoff activity in different viral strains and various hosts.
With the exception of HSV, and understanding of the UL41
proteins of other alphaherpesviruses is limited. UL41 pro-
teins from different viruses, such as ORF17 and VHS, have
different effects on viral infections. In addition, the HSV-1
VHS protein not only induces mRNA degradation, it also
promotes dsRNA degradation. These results suggest that
VHS homologs in other alphaherpesviruses may have an-
other function in addition to RNase activity, which should be
further explored in future studies. In particular, VHS sup-
presses a variety of cytokines, which leads to widespread im-
mune shutoff, and whether other host proteins arrest VHS-
induced immune shutoff for cell survival is unknown. Fur-
thermore, the fate of AU-rich mRNAs is unknown. AREs
generally promote destabilization, and VHS efficiently de-
grades AU-rich mRNAs by binding TTP and AU-rich
mRNAs that are not resistant to SOX-induced shutoff. How-
ever, the SRE in the IL-6 mRNA 3'UTR can effectively es-
cape viral endonucleases, and this region also contains AREs.
The mechanisms associated with this process are undoubt-
edly complicated, and the role of viral endonucleases in the
fate of AU-rich mRNAs is worth further study. It is unclear
whether SOX/muSOX proteins need host or viral proteins
to target transcripts. We further speculate that these proteins
may play role in other cellular and host processes to promote
survival, which should aid in elucidating the mechanisms of
herpesviruses host shutoff. In summary, a better understand-
ing of host shutoff proteins not only provides new insights
into the viral replication, expression and immune evasion
process, but also contributes to provide new molecular tar-
gets for the development of antiviral drugs and therapies.
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