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Abstract

Background: Porcine circovirus (PCV) disease caused by PCV type 2 (PCV2) is mainly attributed to immunosuppression
and immune damage. PCV2 can infect vascular endothelial cells and induce high expression of endothelial IL-8.
Dendritic cells (DCs), as professional antigen-presenting cells, can not only present antigens but also activate naïve T-
cells, causing an immune response.

Methods: To demonstrate whether endothelial IL-8 is the main factor inhibiting the maturation and related functions
of dendritic cells during PCV2 infection, monocyte-derived DCs (MoDCs) and porcine iliac artery endothelial cells (PIECs)
processed by different methods were co-cultured in two ways. Flow cytometry, molecular probe labeling, fluorescence
quantitative PCR, and the MTS assay were used to detect the changes in related functions and molecules of MoDCs.

Results: Compared to those in the PIEC-DC group, the endothelial IL-8 upregulation co-culture group showed
significantly lower double-positive rates for CD80/86 and MHC-II of MoDCs and significantly increased endocytosis of
MoDCs. Meanwhile, the adhesion rate and average fluorescence intensity of MoDCs were significantly downregulated in
migration and adhesion experiments. Furthermore, the MHC-I and LAMP7 mRNA levels in MoDCs and the proliferation of
MoDC-stimulated T-cells were markedly reduced. However, the changes in MoDCs of the endothelial IL-8 downregulation
co-culture group were the opposite.

Conclusions: PCV2-induced endothelial IL-8 reduces the adhesion and migration ability of MoDCs, resulting in a decreased
maturation rate of MoDCs, and further inhibits antigen presentation by DCs. These results may explain the
immunosuppressive mechanism of PCV2 from the perspective of the interaction between endothelial cells and DCs in vitro.
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Background
Porcine circovirus (PCV) disease caused by PCV type 2
(PCV2) leads to major economic losses in the pig indus-
try worldwide, mainly due to the immunosuppression
and immunopathological damage in infected piglets [1,
2]. Its clinical manifestations include post-weaning
multi-systemic wasting syndrome (PMWS) [3], porcine

dermatitis and nephropathy syndrome (PDNS) [4], re-
productive disorders, and porcine respiratory disease
complex (PRDC) [5]. In recent years, the study of the
immunosuppression mechanism caused by PCV2 has
become the focus of effective control and prevention of
PCV2. Currently, vaccine inoculation is an effective
means of preventing and controlling PCV2 infection, but
vaccines can only alleviate lymphoid tissue damage,
viremia, and PCV2 replication in vivo and not block the
spread of PCV2 and clear the virus in pigs [6]. To fur-
ther enhance the effect of the vaccine, some adjuvants
are usually added to the vaccine. Studies have confirmed
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that cytokines have an obvious immune adjuvant effect
and are good immunopotentiators. The current research
on cytokine adjuvants mainly focuses on interferons and
interleukins [7, 8]. Therefore, it is very important to
study the role of cytokines in pathogenesis for better de-
velopment of vaccines and prevention of diseases.
DCs can efficiently take up, process, and present anti-

gens; activate naïve T-cells; and induce immune responses
[9]. These biological functions are closely related to
in vivo migration [10]. At first, DCs reach the peripheral
tissues from the hematopoietic organs and then from the
latter reach the T-cell area of the lymph nodes. In the ini-
tial process, DCs are immature and have a high capacity
to capture antigens. Thereafter, DCs gradually mature and
have a high ability to process and present antigens and ac-
tivate naïve T-cells [11]. DCs can deliver antigen peptides
not only to CD4+ Th cells through binding of the major
histocompatibility complex (MHC)-II to antigen peptides,
but also to CD8+ Tc cells by binding of MHC-I class mol-
ecules to antigen peptides [12], which play an important
role in the body’s antiviral immunity. However, some vi-
ruses, such as Herpes virus [13], influenza virus [14], and
human immunodeficiency virus [15], can evade or delay
immune responses by disrupting DC function [16, 17].
Endothelial IL-8 produced by endothelial cells and fibro-

blasts is quite different from leukocytic IL-8. Studies have
shown that while endothelial IL-8 mediates weak chemo-
taxis, it can induce apoptosis and inhibit the maturation of
DCs in humans [18, 19]. PCV2 can cause arterial endothe-
liitis in infected pigs and can be detected in endothelial
cells [20]. Porcine iliac artery endothelial cells (PIECs) can
inhibit the maturation of monocyte-derived DCs (MoDCs),
and PCV2-infected PIECs can further inhibit MoDC mat-
uration, while PCV2-infected PIECs can highly express
endothelial IL-8 [21]. Therefore, this study used two differ-
ent co-culture methods to detect the changes in MoDCs
by flow cytometry, molecular probe labeling, fluorescence
quantitative PCR, and the MTS assay. It aimed to elucidate
whether endothelial IL-8 was the main molecule involved
in the inhibition of DC maturation after PIECs were in-
fected with PCV2. This will improve the immunopatho-
genesis of PCV2.

Materials and methods
Virus and animals
The PCV2-SD/2008 strain (GenBank accession number:
GQ174519) used in this study was isolated and identified
by Laboratory of Animal Infectious Diseases at Hebei
Agricultural University according to the reported study
[22]. The viral stock was prepared in PK-15 cells with a
titer of 105.5 TCID50/ml. Six healthy, 21-day-old, Large
White-Dutch Landrace crossbred weaning piglets were
used and their treatment methods at the end of the ex-
periment were consistent with those used previously [21],

that is, the piglets were euthanized by intravenously inject-
ing an excess of sodium pentobarbital (70 ± 80mg/kg,
Sinopharm Chemical Reagent Beijing Co., Beijing, China).

Cells
The culture of PIECs and isolation of peripheral blood
mononuclear cells (PBMCs) were performed in accordance
with the methods introduced in the literature [21]. PIECs
were obtained from the Cell Resource Center of Shanghai
Institutes for Biological Sciences (Shanghai, China, Catalog
number: GN105) and maintained in RPMI 1640 (GIBCO,
Grand land, NY, USA) supplemented with 10% heat-
inactivated fetal bovine serum (FBS) (Sigma, Missouri,
USA) and 200U of penicillin-streptomycin/ml at 37 °C in a
humidified 5% CO2 incubator (Thermo, New York, USA).
PBMCs were isolated with EDTA-anticoagulant periph-

eral blood from the front cavity vein of each piglet by dens-
ity centrifugation over Ficoll-Paque (1.077 g/L) at 400×g for
20min, and then labeled with fluorescein isothiocyanate
(FITC)-CD14 antibody (Bio-Rad, California, USA). CD14+

monocytes were fractionated by magnetic separation using
an MS column (Miltenyi, Bergisch-Gladbach, Germany) and
their purity was more than 90%. The isolated monocytes
were stained by trypan blue exclusion, and the concentra-
tion was 1 × 107 cells/ml for inducing MoDCs. Relying on
previous studies [23] and our pre-experimental results,
MoDC induction medium (10% FBS RPMI1640 medium
containing 5 ng/ml porcine granulocyte-macrophage
colony-stimulating factor [GM-CSF] (R&D, Minnesota,
USA) and 3.75 ng/ml recombinant porcine IL-4 (R&D, Min-
nesota, USA) was used to induce MoDCs in a humidified
5% CO2 atmosphere at 37 °C.

Preparation of different PIECs
PCV2-PIECs
PIECs were seeded (1 × 105 cells/well) into a 24-well plate.
After the cells reaching approximately 50–70% confluence
were infected with PCV2-SD/2008 at a multiplicity of in-
fection of 0.2 for 1 h, the infection medium was washed
away and the cells were incubated in a humidified 5% CO2

atmosphere at 37 °C with RPMI 1640 containing 10% FBS
(complete medium).

IL-8over-PIECs
According to the literature [24], a plasmid containing
the porcine endothelial cell-derived IL-8 gene fragment
(Lenti-OE-IL-8) was transfected into 293 T cells (human
renal epithelial cell line purchased from Nanjing Keke
Biotechnology Co., Ltd.). After 3 days, the supernatant
was harvested and concentrated to obtain the Lenti-OE-
IL-8 virus. PIECs were infected by the Lenti-OE-IL-8
virus and passaged three times. Significantly increased
IL-8 gene and protein expression was observed with RT-
PCR and enzyme-linked immunosorbent assay (ELISA),
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meaning IL-8 overexpression in PIECs was successfully
established and the cells were named IL-8over-PIECs.

IL-8si-PIECs
PIECs were seeded on 24-well plates in 10% FBS RPMI 1640
without penicillin/streptomycin, and were incubated in a hu-
midified 5% CO2 atmosphere at 37 °C overnight. When the
cells reached 60% confluence, they were treated with 80 μM
small interfering RNA (siRNA) per well in RPMI 1640. Equi-
molar amounts of siRNA were incubated with Lipofecta-
mine 2000 Transfection Reagent (Madison, WI, United
States) according to the manufacturer’s instructions. The
transfection efficiency was detected by fluorescence micros-
copy, reverse transcription polymerase chain reaction (RT-
PCR), and ELISA. When the IL-8 expression inhibition rate
of PIEC reached 60% or more, the IL-8 protein level signifi-
cantly downregulated, and IL-8si-PIECs could be used for
subsequent experiments. IL-8 siRNA (sense: 5′-CGAUGC-
CAGUGCAUAAAUATT-3′, antisense: 5′-UAUUUAUG-
CACUGGCAUCGTT-3′) and negative (control) siRNA (se
nse: 5′-UUCUUCGAACGUGUCACGUTT-3′, antisense:
5′-ACGUGACACGUUCGGAGAATT-3′) were designed
and synthesized by Shanghai Genepharma (Shanghai, China).

Ab-IL-8-PIECs
During co-culture with MoDCs, IL-8 neutralizing anti-
body (5 μg/ml, Abcam, Cambridge, USA) was added to
the MoDC induction medium.

Co-culture of PIECs and MoDCs
The 0.1-μm pore size Transwell membranes (Millipore,
Massachusetts, USA) were suspended in 24-well plates
(Corning, New York, USA). Monocytes were seeded into
the upper reservoir of the Transwell membrane with the
MoDC induction medium. Two co-cultivation methods
(after-induction co-culture and with-induction co-culture)
were used to confirm the relationship between endothelial
cell-derived IL-8 and MoDC-related functions. The
former involved adding the sorted monocytes into the
upper chamber of Transwell, after which these cells were
induced in the MoDC induction medium, and half of the
medium was changed every other day for 5 days. The cells
were then co-cultured with different pre-treated PIECs in
a humidified 5% CO2 atmosphere at 37 °C for 48 h. In the
latter approach, the isolated monocytes were added to the
upper chamber of Transwell and directly co-cultured with
the different pre-treated PIECs in a 24-well plate for 5
days. The induced medium was the same as the former.
The ratio of the upper and lower cells was 1:10. MoDCs
from different co-culture groups were collected and
counted by the trypan blue exclusion method for further
study. Meanwhile, DCs from the induced monocytes and
the PCV2-infected DCs were also included.

According to the different PIECs, the experiment was di-
vided into seven groups: PIEC-DC, PCV2-PIEC-DC, IL-
8over-PIEC-DC, Ab-IL-8-PIEC-DC, IL-8si-PIEC-DC, DC
alone, and PCV2-DCs. Among them, PCV2-PIEC-DCs and
IL-8over-PIEC-DCs belonged to the endothelial IL-8 upreg-
ulation groups, and Ab-IL-8-PIEC-DCs and IL-8si-PIEC-
DCs belonged to the endothelial IL-8 downregulation
groups.

Detection of MoDC phenotype molecules
CD1a, SWC3a, CD80/86, and MHC-II on the surface of
MoDCs were determined using flow cytometry (Beck-
man-Coulter, California, USA). Mouse anti-porcine
FITC-CD1a antibody and FITC-anti-Monocyte/Granulo-
cyte antibody (Abcam, Cambridge, UK) were used to de-
tect DCs. Mouse anti-porcine FITC-SLA-DR antibody
(AbD Serotec, Kidlington, UK) and the R-PE-CD152
(CTLA-4)-muIg (Ancell, California, USA) were used for
the detection of DC maturation. Isotype control anti-
bodies mouse IgG1-FITC, mouse IgG2a-FITC (Abcam,
Cambridge, UK), mouse IgG2b-FITC (AbD Serotec,
Kidlington, UK), and mouse IgG1-PE (Ancell, California,
USA) were used for background control.

Endocytosis of MoDCs
After the MoDCs were collected and counted, 150 μl of
each sample cell suspension and 150 μl of FITC-Dextran
(Sigma, Missouri, USA) (molecular weight, 40 KD; con-
centration, 1 mg/ml) were mixed and incubated in a hu-
midified atmosphere of 5% CO2 at 37 °C for 1 h. After
centrifugation at 1000 r/min for 10 min, the cells were
resuspended with 200 μl of RPMI 1640 medium and the
percentage of FITC+ cells in each group was detected by
flow cytometry to analyze the endocytosis of MoDCs.

Adhesion of MoDCs
According to a previous study [25], the monolayer of PIECs
was incubated with the molecular probe Green 5-
chloromethyl fluorescein diacetate (CMFDA; LP0S6ate,
Abcam, Cambridge, UK) at 37 °C for 45min. The different
derived MoDCs were incubated with dihydroethidium
(DHE, Beyotime, Shanghai, China) 37 °C for 45min, re-
spectively. After the labeled MoDCs (200 μl) were co-
incubated with the labeled PIEC monolayer for 4 h, the
supernatant was discarded and the unattached MoDCs
were gently washed and fixed with 4% paraformaldehyde
for 20min. The adhesion was visualized under a fluores-
cence microscope (adhesion ratio = the number of MoDCs/
the number of PIECs).

Migration of MoDCs
The different groups of MoDCs were incubated with
DHE at 37 °C for 45 min, centrifuged at 2000 rpm for 10
min, resuspended with serum-free RPMI1640 medium,
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and were adjusted to 5 × 105/ml. Labeled MoDCs
(100 μl) were added to the pre-paved PIECs of the 24-
well Transwell (5 μm) upper chamber and serum-free
RPMI 1640 containing 200 ng/ml MCP-1 (Peprotech,
New Jersey, USA) was added to the lower chamber.
After incubation at 37 °C for 8 h, the relative fluores-
cence intensity of the cells in the lower chamber was
determined as the relative migration quantity of the
cells by using a multifunctional automated quantita-
tive plate reader (PHERAstar; BMG Labtech, Offen-
burg, Germany).

Extraction of total RNA and real-time fluorescence
quantitative RT-PCR (FQ RT-PCR)
The total RNA of MoDCs in the different groups above
was respectively extracted according to the RNA extrac-
tion kit instructions (Aidlab, Beijing, China), and was
reverse-transcribed to synthesize cDNA according to the
instructions of the reverse transcription kit (Cwbio,
Beijing, China). Referring to a previously reported
method [26], the molecules (LMP7, UBP, MHC-I, calre-
ticulin, and β-actin; primers are shown in Table 1) were
detected by real-time FQ RT-PCR.

Mixed lymphocyte reaction
2 × 106 T-cells/ml enriched from PBMCs of allogeneic
animals by using a nylon wool column (Nylon Fiber Col-
umn T [L-Type], Wako, Japan) were mixed with 2 × 105

DCs/ml in 96-well plates at the ratio of 10:1. T-cells
without stimulator cells were used as an untreated con-
trol. The cultures were incubated in growth medium at
37 °C in an atmosphere of 5% CO2 for 3 days.
Proliferation was measured using the Cell Titer 96 AQue-

ous One Solution Assay (Promega, Wisconsin, USA).
Twenty microliters of 3-(4, 5-dimethylthiazol-2-yl)-5-(3-
carboxymetho-xyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
inner salt (MTS) was added to each well and incubated for

another 4 h. The optical density (OD490nm) was recorded
using a microplate reader (Bio-Rad, California, USA). Raw
data were calculated as the stimulation index (SI) = (
ODtreated – ODblank)/(ODuntreated – ODblank).

Statistical analysis
The data are presented as mean ± standard deviation (SD)
values of three independent experiments. For the analysis
of mRNA expression levels, we used the absolute quanti-
tative method. Raw data were normalized against the
values obtained for β-actin and the transcription levels
were expressed as the ratio of molecules to β-actin mRNA
expression, and the fold-changes of the other groups over
the DC alone group were seen as the relative values of
each molecule to compare mRNA levels between groups.
A one-way analysis of variance was used to determine
whether the differences between groups were statistically
significant. P values < 0.05 were considered significant.

Results
Endothelial IL-8 induced by PCV2 inhibited the
maturation of MoDCs
As seen in Fig. 1A, more than 90% of MoDCs were posi-
tive for both CD1a and SWC3a, which indicated MoDCs
had been induced successfully. In both co-culture modes,
the expression rates of MHC-II and CD80/86 in all co-
culture groups were significantly lower than those in the
single culture groups. In the after-induction co-culture,
the expression rates of MHC-II in the IL-8over-PIEC-DCs
were significantly lower than those in the PIEC-DCs, while
in the with-induction co-culture, the expression rates of
MHC-II in the endothelial IL-8 upregulation groups were
significantly lower than those in the PIEC-DCs. The
expression rates of CD80/86 were different from those of
MHC-II (Fig. 1C). The expression rates in the endothelial
IL-8 upregulation groups were significantly lower than
those in the PIEC-DCs, while the expression rates in the

Table 1 Swine-specific primer sequences used for quantitative SYBR ROX-1 real-time PCR

Gene source/accession no. Accession number Primer sequence (5′-3′) Annealing temperature
(°C)

Products
(bp)

LMP7 AF059493 For: AGTGATTGTGGCGGTGGATT 56 328

Rev: CCGAGTCCCATTTTCATCCA

UBP AF134195 For: GTGAGAACTGTGGCAGGAAGACC 58 347

Rev: TTCCCAGGACACCCAACAGA

MHC-I AY135587 For: GAGGGGCAGGAGTATTGGGATAG 58 309

Rev: CCTCAATTGCTCCGCCACAT

Calreticulin GQ984146 For: ATGACTGCTAGGTGTTTAAAATTA 56 226

Rev: GGATCTCTGGCAGGTCAAGT

β-actin U 07786 For: TCATCACCATCGGCAACT 59 547

Rev: TTCCTGATGTCCACGTCGC

Note: β-actin was used as the internal control
bp: base pairs; for: forward primer; rev: reverse primer

Liu et al. Virology Journal          (2019) 16:154 Page 4 of 10



endothelial IL-8 downregulation groups were significantly
higher than those in the PIEC-DCs (Fig. 1D). The signifi-
cant decrease of MHC-II and CD80/86 expression in the
endothelial IL-8 upregulation groups suggested that endo-
thelial IL-8 induced by PCV2 could inhibit the maturation
of MoDCs.

Endothelial IL-8 induced by PCV2 enhanced MoDC
endocytosis
In the two co-cultivation methods, the FITC-positive rates
in the co-culture groups were significantly higher than
those in the single culture groups. The FITC-positive rates
in the endothelial IL-8 upregulation groups were signifi-
cantly higher than that in the PIEC-DC group. On the
other hand, the corresponding rates in the endothelial IL-8
downregulation groups were lower than that in the PIEC-

DC group except for that in the IL-8si-PIEC-DCs of the
with-induction co-culture groups, and the rate in the Ab-
IL-8-PIEC-DCs of the after-induction co-culture groups
was significantly different (Fig. 2). The results above im-
plied that endothelial IL-8 induced by PCV2 could enhance
the endocytosis of MoDCs.

Endothelial IL-8 induced by PCV2 inhibited MoDC
adhesion
The molecular probe-labeled MoDCs were co-cultured
with PIECs and a confocal microscope was used for
examination. Figure 3 showed that the change trends in
the two co-culture modes were basically the same. The
adhesion rate in the PIEC-DCs was significantly higher
than those in the endothelial IL-8 upregulation groups,
and was significantly lower than those in the endothelial

Fig. 1 Dot plots and percentage of dendritic cells expressing surface markers. Flow cytometric analysis was conducted to detect double-positive
staining for surface markers (A: CD1a and SWC3a; B: MHC-II and CD80/86; a and b: background control); flow cytometry was used to determine the
percentage of monocyte-derived dendritic cells (MoDCs) staining positive for MHC-II (C) or CD80/86 (D). Data are presented as the mean and standard
deviation (error bars) for each group. Error bars represent the standard deviation. * indicates P < 0.05. The data are shown as the mean ± standard
deviation of three independent experiments
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IL-8 downregulation groups except for that in the Ab-
IL-8-PIEC-DC of the after-induction co-culture. The
fluorescence image is shown in Fig. 4. These results
demonstrated that PCV2-induced endothelial IL-8 inhib-
ited MoDC adhesion.

Endothelial IL-8 induced by PCV2 inhibited MoDC
migration
In both co-culture methods, the average fluorescence in-
tensity of the single culture groups was significantly higher
than that of the co-culture groups. The average fluores-
cence intensities in the endothelial IL-8 upregulation
groups were significantly lower than that in the PIEC-
DCs, while those in the endothelial IL-8 downregulation
groups were significantly higher than that in the PIEC-
DCs (Fig. 5). These results demonstrated that endothelial
IL-8 inhibited the migration of MoDCs, and the higher
the amount of IL-8 expression, the stronger the inhibition.

PCV2-induced endothelial IL-8 inhibited the endogenous
antigen-presenting function of MoDCs
LMP7, MHC-I, UBP, and calreticulin are major mole-
cules of the endogenous antigen-presentation pathway
of DCs. In both co-culture methods, compared to the
levels in the PIEC-DCs, the expression levels of LMP7
and MHC-I in the endothelial IL-8 upregulation groups
were significantly lower (P < 0.05) but those in the endo-
thelial IL-8 downregulation groups were substantially
higher (P < 0.05) (Fig. 6A and B). However, there was no

significant difference in the expression levels of UBP and
calreticulin. These findings implied that endothelial IL-8
induced by PCV2 inhibited the endogenous MoDC
antigen-presentation function.

PCV2-induced endothelial IL-8 down-regulated the
stimulatory effect of MoDCs on T lymphocytes
The results of T-cell proliferation test showed that the SIs
of after-induction co-cultures were > 1, and the SIs of
with-induction co-cultures were < 1. The SIs of the co-
culture groups were significantly lower than those of the
single culture groups, regardless of whether the co-culture
was performed after-induction or with-induction. More-
over, the SIs of the endothelial IL-8 upregulation groups
were significantly lower than that of the PIEC-DC group,
while those of the endothelial IL-8 downregulation groups
were significantly higher than that of the PIEC-DC group
(Fig. 7). These results indicated that PIECs could inhibit
the proliferation of T-cells stimulated by DCs, whereas the
inhibition of PCV2-induced endothelial IL-8 was stronger.

Discussion
Using MoDCs co-cultured with PIECs processed by dif-
ferent methods, we found that the PCV2-induced endo-
thelial IL-8 could affect MoDC maturation by inhibiting
their adhesion and migration ability. The immature
MoDCs showed high endocytosis ability and low
antigen-presentation capacity, and eventually decreased
the proliferation of T lymphocytes. These results may
explain the immunosuppressive mechanism of PCV2
from the perspective of the interaction between endothe-
lial cells and DCs in vitro.

Fig. 2 Changes in MoDC endocytosis in both co-culture modes.
MoDCs were collected and incubated with FITC-dextran for 1 h, and
FCM was used to detect the FITC-positive cell ratio in each group.
Data are presented as the mean and standard deviation (error bars)
for each group. Error bars represent the standard deviation. *
indicates P < 0.05. The data are shown as the mean ± standard
deviation of three independent experiments

Fig. 3 Changes in the adhesion rates of MoDCs. The adhesion rate
was calculated by fluorescent microscopy using the fluorescent
probe labeling method. Data are presented as the mean and
standard deviation (error bars) for each group. Error bars represent
the standard deviation. * indicates P < 0.05. The data are shown as
the mean ± standard deviation of three independent experiments
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CD80/86 and MHC-II double-positivity are indicators
of MoDC maturity and their weak endocytosis [16, 27].
Vincent reported that the surface molecules of PCV2-
infected DCs in vitro had little change [28], but PCV2 in-
fection in vivo reduced the antigen-presentation capability
of MoDCs [29]. In this study, the double-positivity rates of
CD80/86 and MHC-II in PCV2-infected MoDCs also
showed little changes. Contrary to the results for the sin-
gle culture group, the double-positive rates for MoDCs in
the endothelial IL-8 upregulation groups were significantly
lower than those in the PIEC-DCs, and the double-
positive rates in the endothelial IL-8 downregulation
groups were significantly higher than those in the PIEC-
DC group (Fig. 1C and D). Moreover, the endocytosis of
MoDCs in the co-culture groups was significantly higher
than that in the single culture group, and the endocytosis

in the endothelial IL-8 upregulation groups was stronger
(Fig. 2). Normally, the maturation rate and endocytosis of
IL-8si-PIEC-DC group would be restored to the levels in
the single culture group, but we cannot guarantee that the
gene silencing efficiency was 100%. In order to eliminate
the possible impact of other factors, we established the
Ab-IL-8-PIEC-DC group, and found that the results of the
two groups were similar. Thus, all of these findings indi-
cated that endothelial IL-8 could inhibit the maturation of
DCs, which was strengthened by PCV2.
DCs show the characteristics of transitional maturation

[30]. Once the exogenous antigens invade the body, DCs
adhere to endothelial cells and transendothelially migrate
to peripheral tissues to capture antigens under the influ-
ence of locally secreted cytokines and chemical factors
and finally mature. Endothelial IL-8 can inhibit the adhe-
sion of leukocytes to endothelial cells [31, 32] and transen-
dothelial migration of neutrophils [33]. The present study
revealed that the adhesion and migration rate of MoDCs
were negatively correlated with upregulation of endothe-
lial IL-8 induced by PCV2 infection (Fig. 3-5). In the with-
induction co-culture groups, the migration rates of
MoDCs were lower than those in the after-induction co-
culture groups. This may be due to the difference of the
co-culture duration or the samples batch. Nevertheless, it
can be inferred from the trend of change that PCV2-
induced endothelial IL-8 can influence the maturity of
MoDCs by affecting their adhesion and migration.
DCs that uptake virus successfully migrate into lymph-

oid organs and perform endogenous antigen presentation.

Fig. 4 Adhesion diagram of MoDCs. Fluorescent microscopy was used
to observe MoDC adhesion using the fluorescent probe labeling
method. Red represents MoDCs, Green represents PIECs. A: PIEC-DC, B:
PCV2-PIEC-DC, C: IL-8over-PIEC-DC, D: Ab-PIEC-DC, E: IL-8si-PIEC-DC.
Scar bar = 50 μm

Fig. 5 Changes in MoDC migration. PIECs were seeded into 5.0-μm
Transwell (24-well) chambers and cultured for 12 h After cell fusion,
fluorescently labeled MoDCs were added to the upper chamber.
Transmigration in the lower chamber (supplemented with MCP-1)
was stopped after 8 h. A multifunctional microplate reader was used
to detect the average cell fluorescence intensity. * indicates P < 0.05.
The data are shown as the mean ± standard deviation of three
independent experiments
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LMP7 and UBP play vital roles in promoting antigen pep-
tide production. A suitable MHC-I binding peptide can be
obtained by LMP7 up-regulating proteasome and hydro-
lyzing peptide bond [34, 35]. LMP7 knockout mice show a
significant decrease in MHC-I antigen-presentation func-
tion [36]. UBP can stop the proteasome from degrading
target protein and control the synthesis of antigen peptide
[37, 38]. Calnexin can promote the binding of the heavy
chain and light chain of MHC-I and protect the heavy

chain from degradation. Calnexin is replaced by calreticu-
lin after MHC-I heterodimerization. The absence of calre-
ticulin directly leads to the failure of MHC-I to load
antigenic peptides and reduce the stability of MHC-I [39,
40]. In Fig. 6, the significantly lower expression rates of
LMP7 and MHC-I in the PIEC-DC group compared to
those in the single culture groups and in the endothelial
IL-8 upregulation groups compared to those in the PIEC-
DC group and the significantly higher expression rates in

Fig. 6 Changes in LMP7 and MHC-I mRNA expression in the collected MoDCs. mRNA expression levels of LMP7 and MHC-I were measured by
quantitative real-time PCR. (A) Levels of LMP7 mRNA expression. (B) Levels of MHC-I mRNA expression. Data are expressed as the mean fold-
change in gene expression in collected MoDCs (n = 3 per group). Error bars represent the standard deviation. * indicates P < 0.05
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the endothelial IL-8 downregulation groups compared to
that in the PIEC-DC group imply that the endothelial IL-8
induced by PCV2 inhibits the endogenous antigen-
presentation function of MoDCs, which may be related to
the inhibition of MoDC maturation.
Only terminally differentiated or mature DCs can acti-

vate prime T-cells, while immature DCs specialize in cap-
turing and processing antigens [16]. The results of T-cell
proliferation test (Fig. 7) showed that the SIs of after-
induction co-cultures were > 1, the SIs of the co-culture
groups were significantly downregulated, and those of the
endothelial IL-8 upregulation groups were significantly
lower than that of the PIEC-DC group, while those of the
endothelial IL-8 downregulation groups were significantly
higher than that of the PIEC-DC group. These findings
are consistent with the maturity rates of MoDCs. It is con-
fusing that SIs of with-induction co-cultures were < 1. We
speculated that it could be related to the prolonged co-
culture of MoDCs and PIECs or secretion of some apop-
totic factors. However, the trend of SI change between the
two induced co-cultures was similar.

Conclusions
In summary, PCV2-induced endothelial IL-8 could affect
MoDC maturation and antigen-presenting function
in vitro. Whether endothelial IL-8 has the same biological
function in vivo and its regulation mechanism warrants fur-
ther investigation.
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