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Abstract

Background: Avian influenza A H7N9 virus has caused five outbreak waves of human infections in China since
2013 and posed a dual challenge to public health and poultry industry. The number of reported H7N9 virus human
cases confirmed by laboratory has surpassed that of H5N1 virus. However, the mechanism for how H7N9 influenza
virus overcomes host range barrier has not been clearly understood.

Methods: To generate mouse-adapted H7N9 influenza viruses, we passaged three avian-origin H7N9 viruses in
mice by lung-to-lung passages independently. Then, the characteristics between the parental and mouse-adapted
H7N9 viruses was compared in the following aspects, including virulence in mice, tropism of different tissues,
replication in MDCK cells and molecular mutations.

Results: After ten passages in mice, MLD50 of the H7N9 viruses reduced >750-3,160,000 folds, and virus titers in MDCK
cells increased 10-200 folds at 48 hours post-inoculation. Moreover, the mouse-adapted H7N9 viruses showed more
expanded tissue tropism and more serious lung pathological lesions in mice. Further analysis of the amino acids
changes revealed 10 amino acid substitutions located in PB2 (E627K), PB1 (W215R and D638G), PA (T97I), HA (H3
numbering: R220G, L226S, G279R and G493R) and NA (P3Q and R134I) proteins. Moreover, PB2 E627K substitution was
shared by the three mouse-adapted viruses (two viruses belong to YRD lineage and one virus belongs to PRD lineage),
and PA T97A substitution was shared by two mouse-adapted viruses (belong to YRD lineage).

Conclusions: Our result indicated that the virulence in mice and virus titer in MDCK cells of H7N9 viruses significantly
increased after adapted in mouse model. PB2 E627K and PA T97A substitutions are vital in mouse adaption and should
be monitored during epidemiological study of H7N9 virus.
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Background
A novel reassortant avian influenza H7N9 virus was first
detected in February 2013 and since then, it has posed
an unprecedented threat to both public health and
poultry industry [1, 2]. Until September 5, 2018, H7N9
influenza virus has caused 1,567 human infections, and
615 deaths, with a fatality rate of approximately 39%
(World Health Organization, WHO). The number of la-
boratory confirmed human infections with H7N9 virus
has surpassed that of H5N1 virus [3]. The novel H7N9
virus including avian-origin virus has been reported to

be a tri-reassortant virus of H7, N9 and H9N2 influenza
viruses [4, 5], and isolates from five epidemic waves of
H7N9 influenza virus can be divided into many clades
based on analysis of its genes [6–8]. However, numerous
of new clades are continually occurring, indicated the
continued evolution of H7N9 virus [9]. Moreover, highly
pathogenic (HP) H7N9 virus were reported in late Febru-
ary 2017, which raised more concern about the pandemic
threat of H7N9 virus [10, 11]. Herein, it is in urgent need
to understand pathogenesis of H7N9 virus for control of
this disease.
Though mouse is not a natural host of influenza

viruses, it has been one of the most widely used animal
models and has been applied to numerous areas of
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influenza research, including vaccine evaluation, viru-
lence identification, virus adaptation, host-range
comparison and so on [12–14]. Mice as an excellent
animal model to study the mammalian adaptation of
avian influenza viruses has been used for more than two
decades [15–17]. A lot of previous work has convin-
cingly proved that influenza virus could increase viru-
lence in mice through lung-to-lung passage and many
critical virulence-related sites were discovered by this
method [18–20].
In this study, using sequential lung-to-lung passage in

mice model, we adapted three H7N9 influenza viruses,
A/Chicken/Guangdong/53/2014(H7N9) (H7N9-53), A/
Chicken/Guangdong/MCX/2014(H7N9) (H7N9-MCX) and
A/Chicken/Guangdong/ZSM/2017(H7N9) (H7N9-ZSM).
Mouse-adapted H7N9 viruses were named H7N9-53 MA,
H7N9-MCX MA and H7N9-ZSM MA, respectively.
Evaluation of the virulence and replication feature of
the six H7N9 viruses were conducted in vivo and in vitro.
Moreover, sequencing and comparation of the whole
genomes were performed to find out the amino acids that
determine the increased virulence in the mouse.

Methods
Cells and viruses
Madin-Darby canine kidney (MDCK) cells were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco,
NY) containing 10% fetal bovine serum (FBS, Gibco,
NY) and used for assessment of H7N9 influenza virus
replication.
A/Chicken/Guangdong/53/2014(H7N9) (H7N9-53), A/

Chicken/Guangdong/MCX/2014(H7N9) (H7N9-MCX) and
A/Chicken/Guangdong/ZSM/2017(H7N9) (H7N9-ZSM)
were isolated from chickens in Guangdong, China and
stored in our laboratory. H7N9-53 and H7N9-MCX belong
to Yangtza River Delta (YRD) lineage and H7N9-ZSM be-
longs to Pearl River Delta (PRD) lineage.

Adaption of the three H7N9 influenza viruses in mice
The mouse-adapted H7N9 variants were derived from in-
dependent series of sequential lung-to-lung passages of vi-
ruses in mice as described previously [21]. In brief, fifteen
6-week-old female BALB/C mice were randomly divided
into three groups of five mice and inoculated intranasally
(i.n.) with 50 μl of allantoic fluid containing the parental
H7N9 viruses respectively. At 72 hours post-inoculation
(hpi), lungs from the infected mice were harvested, homog-
enized and centrifuged. Supernatant was collected and in-
oculated to naïve mice at a volume of 50 μl for the next
passage. After a total of 10 passages in mice, the three
H7N9 variants in final lung homogenate were amplified by
10-day-old SPF chicken eggs for 72 h at 37 °C to prepare
virus stocks. Mouse-adapted H7N9 viruses were designated

as H7N9-53 MA, H7N9-MCX MA and H7N9-ZSM MA,
respectively.

EID50 and MLD50

Groups of 4-6 10-day-old specific pathogen-free (SPF)
chicken eggs were inoculated with a series of ten-fold di-
lutions of the H7N9 viruses or supernatants of the ho-
mogenized organ samples at the amount of 0.1 ml. At
72 hpi, hemagglutination (HA) assay was performed to
test HA titers in allantoic fluids. HA titer ≥ 4 log2 are
defined as positive [22]. H7N9 viral titers in allantoic
fluid and organ samples from infected mice were
expressed as log10 EID50/ml. The detection limit of this
assay was a titer of 0.75 log10 EID50/ml, and samples
with titers less than 0.75 were assigned a value of 0.5.
The 50% mouse lethal dose (MLD50) of the six H7N9

viruses was performed as previously described [23].
Briefly, groups of five 6-week-old female BALB/C mice
were inoculated intranasally (i.n.) with a series of
ten-fold dilutions of the H7N9 virus at the volume of 50
μl, and mice inoculated with PBS was set as control. The
mice were monitored daily for death for 14 days after
inoculation and mouse that lost ≥ 25% body weight was
humanely euthanized and regarded as dead. The values
of EID50 and MLD50 were calculated by Reed–Muench
method.

Virulence comparation in mice
To compare the virulence of mouse-adapted H7N9 vari-
ants with parental H7N9 viruses in vivo, 6-week-old fe-
male BALB/C mice were inoculated intranasally (i.n.)
with 106 EID50 of the six H7N9 influenza viruses in 50
μl volume of PBS and monitored daily for weight loss
and death for 14 days, respectively (n=5 per group).
Moreover, mice inoculated with PBS was set as negative
control. For determination of lung viral loads, three mice
in each group were euthanized at 3 and 5 days post in-
fection (dpi) and virus titers in lungs were determined
by plaque assay. Furthermore, samples of hearts, liver,
spleens, kidneys and brains were also collected at 3 dpi
for determination of virus tissue tropism. Briefly, the
organ samples were homogenized in 1 ml PBS and cen-
trifuged at 10,000 × rpm for 10 min at 4°C, and the
supernatant was used for test of EID50. Histopathological
and immunohistochemistry (IHC) examination were also
performed to identify lung lesions 3 dpi. In brief, lungs
were fixed in neutral-buffered 10% formalin for 48 h,
then embedded in paraffin. The paraffin-embedded lung
tissues were sectioned at 4 μm and stained with haema-
toxylin and eosin (H&E) for examination under a light
microscopy. Examination of influenza viral antigen in
the lungs was performed by immunohistochemical ana-
lysis using an anti-influenza nucleoprotein (NP) antibody
as previous described [24].
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Viral growth kinetics in MDCK cells
Viral growth kinetics in MDCK cells were used for com-
parison of mouse-adapted H7N9 variants and parental
H7N9 viruses in vitro. MDCK cells were infected with
H7N9 viruses at a multiplicity of infection (MOI) of
0.01, after incubation for one hour, MDCK cells were
washed three times and overlaid with DMEM containing
1-2 μg/ml TPCK-treated trypsin. Supernatant was col-
lected at 12, 24, 36, 48, 60 and 72 hpi. Virus titration in
MDCK cells was determined by plaque assay and calcu-
lated by Reed–Muench method. Titers of virus were
expressed as log10 PFU/ml.

Sequence analysis
Viral RNA of the six H7N9 influenza viruses was ex-
tracted from the allantoic fluids using Trizol Reagent
and reversed into cDNA by reverse transcription. Eight
influenza viral gene segments were amplified by PCR as
previously described [25] and sequenced by GENEWIZ
biotechnology Co. Ltd. The results of sequencing were
aligned by Lasergene sequence analysis software package
(DNAStar, Madison, WI). The GeneBank accession
numbers corresponding to H7N9-53 virus are
MH553113-MH553119 and KY221841; H7N9-MCX are
MH553124-MH553130 and KY221844; H7N9-ZSM are
MH553137-MH553144 (Additional file 1: Table S1).

Statistical analysis
Statistics analysis were performed using GraphPad Prism
6. Unpaired Student's t-tests or ANOVA followed by
Dunnett’s multiple comparison tests were used for statis-
tical comparisons and statistics analysis. Statistical differ-
ence between two groups was indicated by * (p<0.05), **
(p<0.01), *** (p<0.001) and **** (p<0.0001).

Results
Adaption of H7N9 influenza viruses to mice
Firstly, the pathogenicity of parental H7N9-53,
H7N9-MCX and H7N9-ZSM were evaluated in mice,
and the three H7N9 viruses were unlethal to mice even
at a high dose of 108.0 EID50 (Table 1). In order to gener-
ate mouse-adapted variants (designated as H7N9-53
MA, H7N9-MCX MA and H7N9-ZSM MA, respect-
ively), serial lung-to-lung passages of the three H7N9 vi-
ruses were performed in mice independently. After 10
passages, MLD50 of H7N9-53 MA, H7N9-MCX MA and
H7N9-ZSM MA were 4.32, 5.12 and 1.50 log10 EID50/
ml, respectively (Table 1). Compared to the parental
H7N9 viruses, MLD50 of the mouse-adapted variants de-
creased 102.88-106.50 folds. These results indicated that
the virulence of the three H7N9 influenza viruses mark-
edly increased in mice through serial passages.

Pathogenicity feature and tissue tropism of H7N9 viruses
in mice
To compare the virulence of the parental and
mouse-adapted H7N9 viruses in vivo, mice were inocu-
lated intranasally (i.n.) with 106 EID50 of each virus and
a series of assays including body changes, survival rates,
virus titers in different tissues, histopathological and im-
munohistochemistry examination were carried out.
Mice infected with the parental H7N9 influenza virus

survived 14 days with a slight weight loss, but they
recovered to normal body weight soon (H7N9-ZSM
recovered to normal body weight at 12 dpi, and mice in-
oculated with it were the latest recovered) (Fig. 1a, b). In
contrast, mice infected with the mouse-adapted variants
lost body weight from 2-3 dpi (Fig. 1a), and they showed
severe post-infection symptoms, such as mental depres-
sion, severe emaciation, lumbar back arch, loss of appe-
tite, ruffled fur and all succumbed to infection at 8 dpi
(Fig. 1b).
Lung viral loads were determined 3 and 5 days after

inoculation with each H7N9 viruses and the results
showed lung viral titers of the mouse-adapted variants
were significantly higher than that of their parental vi-
ruses no matter at 3 dpi (p=0.0061-0.0491) or at 5 dpi
(p=0.0007-0.0360) (Fig. 2a). Moreover, Lung viral titers
at 5 dpi were higher than at 3 dpi demonstrated con-
stant replication of viruses in lungs (Fig. 2a). The lung
viral titers of H7N9-53 vs H7N9-53 MA, H7N9-MCX vs
H7N9-MCX MA, H7N9-ZSM vs H7N9-ZSM MA were
4.38 ± 0.39 vs 6.11 ± 0.24, 3.02 ± 0.23 vs 4.01 ± 0.41,
5.55 ± 0.21 vs 7.34 ± 0.60 at 3 dpi and 5.16 ± 0.24 vs
7.29 ± 0.21, 5.39 ± 0.61 vs 7.1 ± 0.27, 6.51 ± 0.11 vs 8.50
± 0.90 at 5dpi. Taken together, the three mouse-adapted
H7N9 variants replicated more effectively in mice lungs
compared to their parental H7N9 viruses.
Furthermore, virus titers in heart, liver, spleen, lung,

kidney and brain were tested for comparation of tissue
tropism between the parental and mouse-adapted H7N9
viruses at 3 dpi. H7N9 mouse-adapted variants could be
detected in all tissues, but H7N9 parental viruses could
not be detected in any tissues except of lungs (Fig. 2b).

Table 1. MLD50 of the parental and mouse-adapted H7N9
viruses

Influenza virus MLD50 Decrease in MLD50

(log10 EID50/ml) (log10 EID50/ml)

H7N9-53 >8.0 -

H7N9-53 MA 4.32 >3.68

H7N9-MCX >8.0 -

H7N9-MCX MA 5.12 >2.88

H7N9-ZSM >8.0 -

H7N9-ZSM MA 1.50 >6.5

-: Not applicable
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Virus titers in tissues from the mouse-adapted H7N9
variants revealed that lungs were the highest, followed
by livers, hearts, brains, virus titers in spleens and kid-
neys were the lowest. All, H7N9-53 MA, H7N9-MCX
MA and H7N9-ZSM MA had more expanded tissue
tropism in mice than H7N9-53, H7N9-MCX and
H7N9-ZSM (Fig. 2b).
Histopathological examination of lungs revealed that

mice inoculated with the mouse-adapted H7N9 variants
showed severe lesions with congestion, inflammatory cells
infiltration or deciduous cells in the bronchial lumen.
However, lesions in lungs from mice inoculated with the
parental H7N9 viruses were relatively mild (Fig. 3a). Viral
detection in lungs by IHC showed that positive stained
cells were widely distributed in the mouse-adapted H7N9
variants groups, indicating lung viral loads were high.
Positive signals were relatively weak in mice lungs from
the parental H7N9 viruses (Fig. 3b). Neither lesion nor
H7N9 virus antigen was observed in lungs from mock
mice as expected (Fig. 3).

Growth characteristics of H7N9 viruses in MDCK cells
Comparation of replication ability in vitro between the
parental and mouse-adapted H7N9 viruses was also

conducted in MDCK cells. Growth kinetics revealed that
compared to their parental H7N9 viruses, the
mouse-adapted H7N9 viruses grew faster and achieved
to higher titers (Fig. 4). All the six H7N9 viruses reached
the highest virus titers at 48 hpi, and the mean titers of
H7N9-53, H7N9-53 MA, H7N9-MCX, H7N9-MCX
MA, H7N9-ZSM and H7N9-ZSM MA were 5.52, 7.18,
3.52, 4.52, 7.55 and 9.89 log10PFU/ml, respectively
(p=0.0078-0.0296) (Fig. 4). These results indicated that
the increased virulence in mice of the mouse-adapted vi-
ruses accompanied by the enhanced replication ability in
vitro.

Sequence analysis
To further explore the molecular changes of mouse-
adapted H7N9 viruses which increase the virulence in mice,
genomes of the six H7N9 viruses were sequenced. The
results revealed that there was a total of 13 amino acid
differences located in 10 sites of influenza virus genomes
between the parental and mouse-adapted H7N9 viruses, of
which 5 between H7N9-53 and H7N9-53 MA, 5 between
H7N9-MCX and H7N9-MCX MA, 3 between H7N9-ZSM
and H7N9-ZSMMA, respectively. Moreover, E627K substi-
tution in PB2 protein was the common substitution of the

Fig. 1. Pathogenicity of the parental and mouse-adapted H7N9 viruses in mice. Groups of 5 6-week-old female BALB/C mice were inoculated i.n.
with 106 EID50 (50 μl) of H7N9-53, H7N9-53 MA, H7N9-MCX, H7N9-MCX MA, H7N9-ZSM, H7N9-ZSM MA and PBS, respectively. Body weight
changes and survival rates were monitored daily for 14 days. a Weight changes were recorded daily and represented by means (± standard
deviation). b Mortality was determined by percentage of the surviving mice.
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three mouse-adapted H7N9 viruses and PA T97I substitu-
tion was shared by H7N9-53 MA H7N9-ZSM MA. The
amino acid substitutions were mapped in PB2, PB1, PA,
HA and NA proteins (Table 2), and genes of NP, M and NS
were 100% homologous.
In addition, we queried H7N9 sequences deposited in

the GISAID EpiFlu database, and the number of H7N9
viruses with amino acid substitutions identified in this
study were also displayed in the Table 3.

Discussion
Human infections of H7N9 virus have spread from
mainland China to Hong Kong and Taiwan, even to
Canada and Malaysia, causing unprecedented losses to
public health (WHO). Though H7N9 virus does not poss
sufficient ability for human-to-human transmission, it
could effectively replicate in alveolar epithelial cells of
mammals and transmit via respiratory droplets to kill
ferrets [14], so it is hard to predict whether this disease
will cause a pandemic in the future. H7N9 virus has gen-
erated multiple genotypes for continuous evolution [26].

In general, most of the isolates can be clustered to two
lineages (YRD lineage and PRD lineage). YRD lineage in-
cludes Zhejiang, Jiangsu, Shanghai, and PRD lineage
refers to Guangdong, Guangxi, Fujian, Hongkong [27].
Viruses of the YRD lineage reacted poor with ferret anti-
serum raised by the PRD candidate vaccine (WHO).
Herein, it is important to monitor the prevalence of
H7N9 virus belonging to both YRD and PRD lineage. In
this report, H7N9-53 and H7N9-MCX belong to YRD
lineage, and H7N9-ZSM belongs to PRD lineage.
Through adaption in mice of the three H7N9 influenza
viruses, we tried to seek virulence-associated mutations,
as well as compare mouse-adapted substitutions between
YPD and PRD lineages.
There are many factors influence on mammal adaption

of avian influenza virus and the most important deter-
minant is receptor-binding specificity [28]. As is known
to all, the first step of influenza virus infect host cells is
binding to sialyloligosaccharides on cell surface via
hemagglutinin (HA) protein [29]. Avian influenza virus
HAs prefer binding to α2,3-linked sialic acids, whereas

Fig. 2. Titers of virus in different tissues of the parental and mouse-adapted H7N9 viruses in mice. Groups of 6 6-week-old female BALB/C mice
were inoculated i.n. with 106 EID50 (50 μl) of H7N9-53, H7N9-53 MA, H7N9-MCX, H7N9-MCX MA, H7N9-ZSM, H7N9-ZSM MA and PBS, respectively.
3 dpi, 3 mice were euthanized to collect hearts, liver, spleens, lungs, kidneys and brains for determination of virus titers by EID50. The remaining 3
mice were euthanized for lung viral loads by 5 dpi. a Lung viral loads of mice inoculated with H7N9 virus at 3 and 5 dpi. b Viral distribution of
H7N9 virus in different tissues. The limit of virus detection is indicated by a dotted line.
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HAs of human influenza virus prefer α2,6-linked sialic acids
[30]. Different sialic acid receptor-binding properties make
host-range and change may result in crossing of host
barrier [31]. Another major determinant of host-range is
polymerase activity. Compared with temperature of mam-
malian upper respiratory tract, temperature of avian gastro-
intestinal tract is much higher (38°C of avian vs 33°C of

mammalian). Amino acid substitutions in polymerase pro-
tein usually lead to changing of viral replication efficiency
in different respiratory tract [32, 33]. Moreover, N-linked
glycosylation of HA protein is also an important factor
influence on host-range of influenza virus. Glycosylation
plays an important role in HA protein folding and HA anti-
genicity, and changes at glycosylation sites possible produce

Fig. 3. Histopathology and immunohistochemistry examination of lungs of the parental and mouse-adapted H7N9 viruses. 3 days after the
inoculation, the lungs (n = 3) were examined by H&E staining for pathological changes and by anti-influenza nucleoprotein (NP) antibody for
detection of antigens (×400). a Histopathology examination. Yellow, blue and red arrows indicated congestion, inflammatory cells infiltration
and deciduous cells in the bronchial lumen, respectively. b Immunohistochemistry examination.

Fig. 4. Growth kinetics of the parental and mouse-adapted H7N9 viruses. MDCK cells were inoculated with H7N9-53, H7N9-53 MA, H7N9-MCX,
H7N9-MCX MA, H7N9-ZSM, H7N9-ZSM MA (MOI=0.01), respectively. Supernatants of the cultured cells were collected at a 12-hour interval till 72
hpi. Subsequently, the virus titers were measured by plaque assay and represented by means (± standard deviation).
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improperly folded HA proteins and then affect the antige-
nicity of HA [34]. In addition to the above-mentioned fac-
tors, several determinants also contribute to mammal
adaption, such as morphology of influenza virus, acid stabil-
ity of HA protein and functional balance between HA and
NA [35]. In this study, a total of 9 amino differences was
discovered between the parental and mouse-adapted H7N9
viruses. Among the substitutions, 4 located in HA proteins,
2 in NA protein and 4 in polymerase proteins (1 in PB2, 2
in PB1 and 1 in PA protein).

Further comparation of the amino acids substitutions
discovered that only E627K at PB2 protein shared by the
three mouse-adapted H7N9 viruses. PB2 subunit has
multiple domains and 627-nuclear localization signal
(NLS) domain is the main region that involved in inter-
action with NP protein [36]. Moreover, PB2 627-NLS
domain has been proved to play the role in transcription
and replication of influenza virus RNA genome [37].
Many subtypes of influenza virus, including H3N2,
H5N1, H5N5, H5N6, H6N1, H6N6, H7N1, H7N7,

Table 2. Amino acid differences between the parental and mouse-adapted H7N9 viruses

Influenza virus PB2 PB1 PA HA NP NA M NS

627 - 97 235a (226b) 288a (279b) - 134 - -

H7N9-53 E - T L G - R - -

H7N9-53 MA K - I S R - I - -

627 215 97 229a (220b) - 3 - -

H7N9-MCX E W T R - P - -

H7N9-MCX MA K R I G - Q - -

627 638 - 503a (493b) - - - -

H7N9-ZSM E D - G - - - -

H7N9-ZSM MA K G - R - - - -

-: Not applicable
a: H7 numbering
b: H3 numbering

Table 3. Count the number of H7N9 viruses with amino acid substitutions identified in this study

Segment Position Amino acid Frequency of substitution (no. of strains with the substitution/total no. of strains)

PB2 627 E 1351/2370

K 915/2370

PB1 215 W 1/2358

R 2007/2358

638 D 2197/2358

G 41/2358

PA 97 T 2342/2357

I 7/2357

HA 229 R 2619/2647

G 1/2647

235 L 2590/2647

S 10/2647

288 G 2276/2647

R 7/2647

503 G 12/2647

R 0/2647

NA 3 P 2586/2620

Q 1/2620

134 R 2337/2620

I 0/2620
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H7N9 and H9N2 have been reported increasing viru-
lence by substitution of E627K at PB2 protein [38–40].
Moreover, the evaluation of H7N9 viruses isolated from
avian species between 2013 and 2017 in China revealed
some H7N9 viruses have readily obtained the 627K muta-
tion in its PB2 segment upon replication in ferrets, causing
it to become highly lethal in mice and ferrets [5]. In
addition to the most often-observed substitution of E627K,
there are several other important mutations in the PB2 pro-
tein, such as E158G, D253N, T271A, K526R, Q591K,
A588V, D701N and so on, and these mutations had been
proved to enhance polymerase activity [5, 16, 19, 20, 32].
Another substitution worth noting is T97I at PA protein.
This substitution is shared by the two H7N9 viruses
belonging to PRD lineage. PA T97I substitution was re-
ported in mouse adaption of H5N2, H6N1, H7N1, H10N7
and H7N9 subtypes of influenza viruses [13, 41–47]. But
much work needs to be done about the validation and
mechanism. In addition, other substitutions discovered in
this study have not been reported, indicating that these
mutations are a specific selection of H7N9 virus.
One thing needs to be noted is that though 10 succes-

sive passages in mice were performed to obtain three
mouse-adapted H7N9 influenza viruses, the pathogen-
icity to mice and replication in cells of the three
mouse-adapted H7N9 viruses were different. The
MLD50 of H7N9-ZSM MA is 660 and 4,164 times less
than that of H7N9-53 MA and H7N9-MCX MA, re-
spectively. Virus titer in MDCK of H7N9-ZSMMA was
the highest, followed by H7N9-53 MA, H7N9-MCX MA
was the lowest. All these findings demonstrated that
though E627K substitution is the common mutation of
the three mouse-adapted viruses and it has been proved
to increase virulence in mice, it is not the only
virulence-determination mutation, there must be other
substitutions correlate with E627K to influence virulence
of mouse-adapted H7N9 virus.

Conclusion
The virulence and replicative ability of three H7N9 influ-
enza viruses increased through the sequential
lung-to-lung passages, and several mutations were found,
which may influence on the virulence and growth charac-
teristics of H7N9 viruses. Moreover, PB2 E627K and PA
T97I may play important roles in H7N9 mammal adap-
tion, but the exact role and other substitutions need fur-
ther verification. Our study attaches great importance to
the epidemiological surveillance of H7N9 virus.
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Delta; SPF: Specific pathogen-free; HA: Hemagglutinin; EID50: 50% egg
infectious dose; MLD50: 50% mouse lethal dose; i.n.: Inoculated intranasally;
dpi: days post infection; IHC: Immunohistochemistry; H&E: Haematoxylin and
eosin; NP: Nucleoprotein; MOI: Multiplicity of infection; hpi: Hours post
inoculation.
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