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Abstract

angle plasticity among flaviviruses.

Background: Usutu virus (USUV) is a mosquito-born flavivirus that can infect multiple avian and mammalian species.
The viral surface envelope (E) protein functions to initiate the viral infection by recognizing cellular receptors and
mediating the subsequent membrane fusion, and is therefore a key virulence factor involved in the pathogenesis of
USUV. The structural features of USUV-E, however, remains un-investigated thus far.

Findings: Using the crystallographic method, we determined the structure of USUV-E in the pre-fusion state at 2.0
angstrom. As expected, the overall fold of USUV-E, with three 3-barrel domains (DI, DI, and DIll), resembles those of
other flaviviral E proteins. In comparison to other pre-fusion E structures, however, USUV-E exhibits an apparently
enlarged inter-domain angle between DI and DI, leading to a more extended conformation. Using our structure and
other reported pre-fusion E structures, the DI-DIl domain-angle difference was analyzed in a pairwise manner. The
result shows a much higher degree of variations for USUV-E, indicating the potential for remarkable DI-DIl domain

Conclusion: We report the crystal structure of USUV-E and show that its pre-fusion structure has an enlarged DI-DII
domain-angle which has not been observed in other reported flaviviral E-structures.
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Introduction

The mosquito-born Usutu virus (USUV) was first iden-
tified in 1959 in South Africa [2, 32, 53]. Phylogenetic-
ally, the virus is closely related to Japanese encephalitis
virus (JEV), West Nile virus (WNV) and Murray Valley
encephalitis virus (MVEV), and is therefore catego-
rized into the JEV serocomplex within the Flavivirus
genus of the Flaviviridae family [9, 23, 54]. The natural
life cycle of USUV involves circulation of the virus be-
tween mosquitos and birds such that mosquitos act as
vectors and birds as amplifying hosts [8, 45, 48, 49]. In
addition to avian species, the virus can also, in inciden-
tal cases, be transmitted via mosquito bite to other
species including horses, rodents and even humans [5,
10, 46]. Although human cases of USUV infection re-
main largely asymptomatic, the USUV-related severe
diseases such as fever, rash, and meningoencephalitis
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have also been reported [6, 17, 42]. Furthermore, in la-
boratory infected mice, the virus could be detected in
multiple organs and tissues, including brain, heart,
liver, kidney, lung, and etc., demonstrating the patho-
genic potential of the virus in mammals [1, 33]. It is
notable that several serological surveillance studies
have demonstrated the low-prevalence circulation of
USUV in the European population, raising the risk of
potential USUV outbreaks in humans [19].

As with other flaviviruses, USUV is an enveloped
virus which contains a positive-sense, single-stranded
RNA genome. This genome encodes a large polypro-
tein precursor that would be later, via virus-encoded
and host proteases, proteolytically processed into three
structural (including core (C), pre-membrane (prM),
and envelope (E)) and eight non-structural (NSI,
NS2A, NS2B, NS3, NS4A, 2K, NS4B, and NS5) pro-
teins [3]. Of these, the surface-located E protein recog-
nizes cellular receptor/(s) and mediates subsequent
fusion between the virus envelope and the lipid bilayer
of host cells, and is therefore a key player initiating the
viral infection [42]. Structural investigations on
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flavivirus E protein have revealed a strand-dominated
fold with three B-barrel domains [13]. Domain I (DI) is
centrally located in the molecule. It connects on one
side to domain II (DII) via four polypeptide chains and
on the other to domain III (DIII) with a single poly-
peptide linker. Unlike DI which is overall of globular
shape, DII is an elongated structure. A highly hydro-
phobic fusion peptide is located in this domain, resid-
ing at its distal end. DIII folds into an immunoglobulin
(Ig)-like structure, and is believed to be involved in re-
ceptor binding and also the major target of neutraliz-
ing antibodies. In mature virions, E protein assembles,
in a “head-to-tail” mode, into pre-fusion dimers, shed-
ding the fusion peptide from premature exposure [27].
During viral entry, E protein would experience large
acidic-pH-induced structural re-arrangements via mo-
tions of the DI-DII and DI-DIII domain hinges, which
would finally lead to the formation of post-fusion
trimers and the simultaneous exposure of its fusion
peptide for membrane fusion [7]. The functional im-
portance of E in the flaviviral life cycle makes the pro-
tein a favorite target for structural studies. While the E
structures of multiple flaviviruses, including dengue
virus (DENV), JEV, WNYV, Zika virus (ZIKV), Tick-
born encephalitis virus (TBEV), and etc., have been
reported [4, 11, 13, 20, 26-29, 34, 39-41, 51, 57], the
structural features of USUV E protein (USUV-E)
remains elusive.

In this study, we reported the atomic crystal struc-
ture of USUV-E in its pre-fusion state. As expected,
USUV-E also folds into three B-barrel domains and ex-
hibits an overall extended conformation. Despite that
only a single USUV-E molecule is present in the crys-
tallographic asymmetric unit, a head-to-tail dimer
similar to other flaviviral E structures could be ob-
served via symmetry operations. While the overall
USUV-E structure resembles those of other flaviviral E
proteins, its DII connects to DI in a more extended
manner, leading to an apparently enlarged DI-DII
inter-domain angle. Via structural comparisons, we
further showed that USUV-E, among representative
pre-fusion E structures, exhibits a much higher degree
of domain-angle variations between DI and DII, which
we believe represents potential evidence for a remark-
able DI-DII angle-plasticity among flaviviruses.

Materials and methods

Gene construction

The coding region for ectodomain residues 1-409 of the
envelope protein from USUV (GeneBank: YP_164819)
was synthesized by the GENEWIZ corporation and
cloned into the bacterial expression vector pET21a with
a C-terminal 6 x His-tag by restriction digestion sites of
Nde I and Xhol.
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Protein expression and inclusion body preparation

For protein expression, the recombinant plasmid was
transformed into E. coli BL21 (DE3) cells, and a single
colony was picked up and inoculated into 10 ml LB
medium for overnight growth. The subsequent cell
culture were then transformed into 1L of fresh LB
medium at the volume ratio of 1:100 and allowed to
grow at 37 °C until the ODggy reached 0.6-0.8. Then,
isopropylthiogalactoside (IPTG) was added into the
culture at 1mM to induce the protein expression.
After induction at 37°C for 6h, the cells were col-
lected and analyzed by SDS-PAGE.

For inclusion bodies preparation, the harvested cells
were lysed by sonication in a buffer consisting of 20
mM Tris-HCl, pH 8.0, and 150 mM NaCl. Next, the
lysate was centrifuged at 15,000 g, and the pellet con-
taining the protein inclusion bodies was washed three
times with 50 ml of wash buffer (50 mM Tris-HCI, pH
8.0, 0.5% Triton X-100, 300 mM NaCl, 10 mM EDTA,
10 mM DTT). Then, the purified inclusion bodies were
re-suspended in 40 ml of re-suspension buffer (50 mM
Tris-HCl, pH 8.0, 100mM NaCl, 10mM EDTA, 10
mM DTT) to remove the residual Triton X-100. After
centrifugation at 15,000 g, the final inclusion-body pel-
let was solubilized in dissolution buffer (6 M Gua-HCI,
10% glycerol, 50 mM Tris-HCIl, pH 8.0, 100 mM NaCl,
10 mM EDTA, 10 mM DTT) at 30 mg/ml.

Protein refolding and purification

The USUV-E protein was expressed as inclusion bodies
and then refolded in vitro using the diluted refolding
method [25] with some modifications. Briefly, aliquots
of inclusion bodies were diluted dropwise into a refold-
ing buffer consisting of 100 mM Tris-HCI, pH 8.0, 600
mM L-Arg HCI, 2mM EDTA, 5 mM reduced glutathi-
one, 0.5 mM oxidized glutathione, and 10% glycerol,
and then refolded overnightat 4 °C. Subsequently, the
refolded protein was concentrated using an Amicon
Stirred Cell (UFSC40001) concentrator with 10kDa
cut off membrane and then adjusted to 20 mM
Tris-HCI, pH 8.0, 150 mM NaCl, and 5% glycerol. Then
the refolded E protein was further purified in an AKTA
Pure System by gel filtration on a Superdex 200 in-
crease 10/300 GL column (GE Healthcare).

Crystallization, data collection, and structure
determination

The purified USUV-E protein was concentrated to 8 mg/
ml. The crystallization trials were performed with 1 pl
protein mixing with 1pl reservoir solution and then
equilibrating against 70 ul reservoir solution by sitting
drop vapor diffusion at 18°C. The initial crystallization
screening was performed using the commercially-available
kits (Hampton Research and Molecular Dimensions).
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Conditions that can support crystal growth were then op-
timized with the hanging-drop vapor-diffusion method.
High-quality crystals were finally obtained under a condi-
tion composed of 0.1 M HEPES, pH 7.5, 10% w/v Poly-
ethylene glycol 8000, and 8% v/v Ethylene glycol.
Diffraction data were collected at Shanghai Synchrotron
Radiation Facility (SSRF) BL18U1. For data collection, all
crystals were cryo-protected by briefly soaking in reservoir
solution supplemented with 20% (v/v) glycerol before
flash-cooling in liquid nitrogen. The collected data were
processed using HKL2000 [36].

The structure of USUV-E was determined by the mo-
lecular replacement method using Phaser [16] with the
structure of WNV-E protein (PDB: 2hg0) as the search
model. The atomic model was completed with Coot [14,
15]. Rounds of refinement was performed with REFMAC5
[31], and finally with Phenix[47, 58]. The final model was
assessed with PROCHECK [24]. Final statistics for data
collection and structure refinement are presented in
Table 1. All structural figures were generated using
PyMOL (http://pymol.sourceforge.net). The USUV-E
structure has been deposited into the Protein Data Bank
with a PDB code of 6A0P.

Results and discussion

USUV-E, with a canonical type I transmembrane top-
ology, contains a large N-terminal ecto-domain (residues
F1-R450) (Fig. 1a). To gain insight into the structural fea-
tures of USUV-E, the ecto-domain region of the protein
spanning amino acids F1-A406 was first engineered to in-
clude a C-terminal 6xHis tag and then expressed in E. coli.
Following several previous reports on flaviviral
E-preparations [13, 20, 27], the resultant USUV-E protein
was initially expressed in the form of inclusion bodies
(Fig. 1b), and subsequently refolded and further purified
to homogeneity by gel filtration chromatography (Fig. 1c).

Via crystallization screening, crystals of USUV-E that
can diffract to 2.0 A were successfully obtained via the
hanging-drop vapor-diffusion method. The structure
was solved by molecular replacement and finally re-
fined to Rwork =0.214 and Rfree = 0.247, respectively
(Table 1). Within the crystallographic asymmetric unit,
a single USUV-E molecule was present, and clear elec-
tron densities were successfully traced for USUV-E
amino acids F1-R406 as well as for four terminal His
residues of the fusion tag.

As expected, USUV-E also folds into three domains
(DI, DII, and DIII), showing an extended and a
B-dominated structure (Fig. 2a). DI is composed of
nine B-strands (Ay-Ip), forming a compact barrel struc-
ture. One helix (al) is present in DI, sterically situating
in the vicinity of the AqCyDoEoF, sheet and also of the
molecule N-terminus (Fig. 2a). It is notable that this
helix is also observed in the structures of E proteins

Page 3 of 8
Table 1 Data collection and refinement statistics
Data collection
Space group P 2:2:2,

Cell dimensions

a b cd) 35.04,104.34,115.58

a By 0 90°,90°90°

Wavelength (A) 09793

Resolution (A)?* 50.0-2.0 (2.07-2.00)

Rmerge®® 0.13 (0.808)

I/ol® 1351 (2.73)

Completeness (%)® 99.6 (98.80)

Redundancy® 5.5 (4.9)

Total reflections 161,936

Unique reflections 29,488
Refinement

Resolution (A) 3099-20

Rwork/Rfree® 0.214/0.247
No. of atoms

Protein 31

Water 232
B-factors

Protein 39

Water 425
rm.sd.

Bond lengths (A) 0018

Bond angles (%) 1.64
Ramachandran plot®

Ramachandran favored (%) 98%

Ramachandran allowed (%) 2%

Ramachandran outliers (%) 0

%Values for the outmost resolution shell are given in parentheses

PRmerge = Zizhkl | li-<I > | /ZiZhklli, where i is the observed intensity and < | >
is the average intensity from multiple measurements

“Rwork=% || Fo |- | Fc | | /£ | Fo |, where Fo and Fc are the structure-factor
amplitudes from the data and the model, respectively. Rfree is the R factor for
a subset (5%) of reflections that was selected prior to refinement calculations
and was not included in the refinement

9Ramachandran plots were generated by using the program MolProbity

from other JEV serocomplex members (eg. WNV and
JEV) but not of other flaviviral E proteins (Fig. 2c-d).
We also noted that this helix is, along the E protein se-
quence (Fig. 2e), located in the EgF, inter-strand loop
(also called the glycan loop) where a glycosylation site
locates. The USUV-E protein prepared in this study,
however, lacks any glycosylation modifications at this
site due to expression in E. coli. Nevertheless, when
comparing our protein to a similarly eubacteria-yielded
JEV protein without glycan decoration and an insect-
cell-generated WNYV protein that contains glycan mod-
ifications, their structures revealed both well-aligned
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Fig. 1 Expression and purification of the USUV-E protein. a A schematic view of USUV-E. The ecto-domain and the transmembrane domains (TM)
of the protein are indicated. For USUV-E preparation, its ecto-domain region spanning residues 1-406 was expressed as a fusion protein with a C-
terminal 6xHis tag. The three domains of this ecto-domain protein are highlighted in red, yellow, and blue, respectively, and the fusion loop is in
grey. b Small-scale expression and inclusion-body extraction. The SDS-PAGE results are shown. Lane 1, un-induced; lane 2, induction with 0.2 mM
IPTG; lane 3, induction with 1 mM IPTG; lane 4, the extracted inclusion bodies. The USUV-E protein was marked with arrows. ¢ Purification of the
refolded USUV-E protein by size exclusion chromatography. The separation chromatograph of the protein and the SDS-PAGE analyses of the

Elution Volume (ml)

EoFo loops and the al helices (Fig. 2c). The formation
of such a helix in the USUV, JEV, and WNYV E proteins
is therefore unlikely affected by the glycosylation status
of this glycan loop. In light of the high conformation-
variability observed for this glycan loop in other flavi-
viral E structures (Fig. 2d), we believe this extra al
helix is likely a novel feature of the JEV serocomplex
viruses. Sterically, DI is located in the center of the E
molecule and is further flanked on one side by DII and
on the other by DIII (Fig. 2a). DII consists of 8 strands
(a-h) and 4 helices (aa-ad), exhibiting a rather ex-
tended conformation. This domain can be further di-
vided into two subdomains (subdomain I and II). The
latter directly connects to DI via four polypeptide
linkers and is composed of a four-stranded (a, d, e, and
f) anti-parallel B-sheet and three a-helices (ab, ac, ad);
while the former is located at the distal end of the mol-
ecule, showing a B-barrel fold with three long strands
(b, ¢, and d) at the bottom and two small ones (g and
h) on the top. The fusion peptide, with amino acids
G100-F108 is residing in subdomain I. It is also note-
worthy that the DII d strand, which is of great length,
exhibits a twisted conformation and extends from
subdomain I to subdomain II (Fig. 2a). DIII is also a
B-barrel structure. It contains in total 6 anti-parallel
B-strands (A-F), assembling into an overall Ig-like
fold. The inter-domain angles between DI-DII and
DI-DIII were calculated to be 144.4° and 153.6° re-
spectively. On the whole, the solved USUV-E

structure is quite similar to those of other flaviviral E
proteins [13, 20, 27, 29, 34, 39, 41].

We then characterized the possible dimeric architec-
ture of USUV-E using our structure. As expected, a
head-to-tail USUV-E dimer which resembles previously
reported flaviviral pre-fusion E-dimers could be gener-
ated via simple symmetry operations (Fig. 2b). In this
dimer form, the highly hydrophobic fusion loop is read-
ily concealed from the bulk solvent by the DIII domain
of the other molecule.

To further characterize the similarities and differ-
ences between our structure and other reported
pre-fusion E crystal structures, those from DENV [28,
41, 57], JEV [26, 27], WNV [34], ZIKV [4, 13, 28, 51],
and TBEV [39] (either in the free form or in the
antibody-bound form) were selected and superimposed
for structural comparison. While the DI and DIII do-
mains could be well aligned, an astonishing oriental
difference was observed for the DII domain such that
it connects to DI in a more extended manner in
USUV-E and therefore leads to an obviously enlarged
inter-domain angle (Fig. 3a). This makes USUV-E an E
protein with the largest DI-DII angle characterized
thus far. To learn, in a more quantitative way, the ob-
served domain-angle variations between DI and DII
among these structures, the angle-difference was cal-
culated for each structure pairs and then plotted in
cluster for each structure group. As shown in Fig. 3b,
in comparison to other E-structures which vyield
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Fig. 2 Overall Structure of the USUV-E protein. a An overview of the solved structure. The three domains (DI, DII, and DIIl) are colored in red,
yellow, and blue, respectively, and the fusion loop is in green. The inter-domain angles between DI and DIl and between DI and DIIl, which are
calculated to be 144.4° and 153.6°, respectively, are highlighted. All the secondary structure elements (followed the nomenclature reported for
ZIKV envelope [13]) referred to in the text are labeled. b A head-to-tail USUV-E dimer generated by symmetry operations. The original USUV-E
molecule is colored as in panel a, and the symmetry related molecule is in grey. The buried fusion loop is highlighted in green. ¢ Superimposition of
the DI of E-structures of JEV serocomplex (E-USUV marked in red ribbon, E-WNV in cyans, and E-JEV in wheat tint); highlighting their EoF loops
(shaded for clarity) and the loop-located al helices. d Superimposition of the DI of E-structures of other flaviviruses (the JEV serocomplex members
excluded). Clearly shown is that the al helix is not present in these structures, and the EqFy loop is of variable conformation. e Structure-
based multiple sequence alignment of representative flaviviral E proteins. Horizontal arrows indicate -strands and spinal lines highlight a-
helices. The Asn residue that could be glycosylated in the EoFo loop is marked with a red triangle, and those residues recognized by
CR4354 are highlighted with black boxes
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Fig. 3 Comparison of USUV-E structure with other reported crystal and cryo-EM pre-fusion flaviviral E-structures. a Superimposition of the crystal
E-structures. The pre-fusion E-structures selected for comparison include those from DENV2 (PDB code: 1tg8, Toan, 1oke, 4ut6, 4ut9, 4uta, 4utb,
and 4utc), DENV3 (PDB code: 1uzg), DENV4 (PDB code: 3uaj), WNV (PDB code: 2hg0), JEV (PDB code: 3p54, 5mv1, 5mv2), TBEV (PDB code: 1svb),
and ZIKV (PDB code: 5gzn, 5gzo, 5jhl, 5jhm, 5lbs, 5lbv, 5n0a, and 5n09). The USUV-E structure is colored red for DI, yellow for DII, and blue for DIl
respectively, and the rest E-structures are colored grey. The right panel is yielded by rotation of the structure for about 90° around a vertical axis.
Clearly shown is that while the DI and DIl domains could be well aligned, DIl connects to DI in a more extended manner in USUV-E, resulting in
an obviously enlarged inter-domain angle. b A quantitative comparison of the DI-DIl domain-angle variations characterized in panel a. For each
structure, its DI-DIl domain-angle was compared to those of other structures, and the angle-difference was calculated for each structure pairs and then

plotted as black dots. The angle-difference of USUV-E (relative to other flaviviral E proteins) was marked with red triangle. The mean values was
represented with horizontal green lines. ¢ Superimposition of our structure with representative cryo-EM pre-fusion E-structures including those from
JEV (PDB code: 5ywo, 5wsn), ZIKV (PDB code: 6co8), and DENV-2 (PDB code: 3J27). The molecules are oriented and colored the same as in panel a

angle-differences ranging from ~ 0-12.8° (with an aver-
age ranging from ~ 3-7.8°), a much higher degree of
variations was observed for USUV-E (with angle-differ-
ences ranging from ~ 10.7-23.5° and an average of ~
18°). It is notable that such domain-angle variations
between DI and DII have been widely observed in crys-
tal structures of flaviviral E proteins, for which the
crystal packing forces might also play a role. We there-
fore selected the cryo-EM structures of JEV [38, 52],
ZIKV [43], and a representative dengue virus
(DENV-2) [56] for a similar domain-angle comparison.
Similar to those observed with the E crystal structures,

USUV-E is also the most extended pre-fusion structure
analyzed in this study (Fig. 3c). We also noted that
four His residues of the fusion tag are also traceable in
our structure and extend towards DII. Nevertheless,
these amino acids are far away (~ 16.6 A) (Fig. 2a) from
physically interacting with DII residues and are
unlikely the reason causing the increased DI-DII angle.
We therefore believe the enlarged domain-angle
between DI and DII in USUV-E is an intrinsic struc-
tural feature of this viral protein. It should be noted
that the inter-domain motion is commonly observed in
flaviviral E proteins and has been proposed as a
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prerequisite for the pre-fusion to post-fusion transi-
tions [37, 44]. Nevertheless, the DI-DII angle-differ-
ence as high as shown for the USUV-E structure
reported in this study has not been observed previ-
ously. We believe this may represent potential
evidence for a remarkable DI-DII domain-angle plasti-
city among flaviviruses. Our structure also indicates a
notion that flaviviruses have evolved to adjust to
accommodate species-specific dimeric arrangements
featured with their variant DI-DII domain-angles.

Finally, a couple of potent neutralizing monoclonal
antibodies (mAbs) against JEV and WNYV, including
A3, B2, E3, E113, NARMA3, 503, and CR4354, have
been reported [12, 18, 22, 30, 35, 50, 55]. It is notable
that among these, CR4354 recognizes E-epitopes locat-
ing in the DI-DII hinge region [21, 50]. We noticed
that the hinge-residues recognized by CR4354 are
largely preserved in USUV-E (Fig. 2e). Nevertheless,
the observed enlarged DI-DII domain-angle of the
USUV protein raises the possibility that these amino
acids might occupy variant steric locations. It is there-
fore worth studying in the future to learn if CR4354
(or any other JEV serocomplex mAbs that target the
DI-DII hinge region) could also be potentially used to
prevent USUV infections.
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