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Abstract

Background: An HIV cure has not yet been achieved because latent viral reservoirs persist, particularly in resting
CD4+ T lymphocytes. In vitro, it is difficult to infect resting CD4+ T cells with HIV-1, but infections readily occur
in vivo. Endothelial cells (EC) line the lymphatic vessels in the lymphoid tissues and regularly interact with resting
CD4+ T cells in vivo. Others and we have shown that EC promoted productive and latent HIV infection of resting
CD4+ T cells. However, the EC used in previous studies were from human umbilical cords (HUVEC), which are
macrovascular; whereas EC residing in the lymphoid tissues are microvascular.

Methods: In this study, we investigated the effects of microvascular EC stimulation of resting CD4+ T cells in
establishing viral infection and latency. Human resting and activated CD4+ T cells were cultured alone or with
endothelial cells and infected with a pseudotyped virus. Infection levels, indicated by green fluorescent protein
expression, were measured with flow cytometry and data was analyzed using Flowing Software and Excel.

Results: We confirmed that EC from lymphatic tissue (LEC) were able to promote HIV infection and latency formation
in resting CD4+ T cells while keeping them in resting phenotype, and that IL-6 was involved in LEC stimulation of CD4
+ T cells. However, there are some differences between stimulation by LEC and HUVEC. Unlike HUVEC stimulation, we
demonstrated that LEC stimulation of resting memory T cells does not depend on major histocompatibility complex
class II (MHC II) interactions with T cell receptors (TCR) and that CD2-CD58 interactions were not involved in LEC
stimulation of resting T cells. LEC also secreted lower levels of IL-6 than HUVEC. We also found that LEC stimulation
increases HIV infection rates in activated CD4+ T cells.

Conclusions: While differences in T cell stimulation between lymphatic EC and HUVEC were observed, we confirmed
that similar to macrovascular EC stimulation, microvascular EC stimulation promotes direct HIV infection and latency
formation in resting CD4+ T cells without T cell activation. LEC stimulation also increased infection rates in activated
CD4+ T cells. Additionally, the present study established a physiologically more relevant model of EC interactions with
resting CD4+ T cells and further highlighted the importance of investigating the roles of EC in HIV infection and
latency in both resting and activated CD4+ T cells.
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Background
Antiretroviral therapy (ART) is able to control the repli-
cation of human immunodeficiency virus type 1 (HIV-1)
in patients but cannot eradicate the virus. As a result,
HIV persists and HIV patients require lifelong therapy
to suppress viremia. A major barrier to eradication is the
presence of latent cellular reservoirs, particularly in rest-
ing CD4+ memory T cells. Because of the long life span
of these cells, their proliferative capacity, and the ex-
tremely slow decay rate of the reservoir, this poses the
biggest obstacle for an HIV cure. Since the discovery of
this reservoir in the 1990s, much has been learned about
latency maintenance (reviewed in [1] and [2]), latency
reversing agents (reviewed in [3]), and strategies to elim-
inate the reservoir (reviewed in [4] and [5]). Although
much effort has been made to reactivate latent HIV in
order to eliminate the reservoir, significant hurdles to
this approach have been encountered because cell death
did not ensue after latency reversal (reviewed in [6]). Re-
cent innovations involve using latency strengthening
agents or CRISPR based systems to further lock latent
virus inside the infected cells in order to prevent reacti-
vation [7]. This approach may be promising, but most of
the work is still at the in vitro stage. In the meantime,
our understanding of how the latent reservoir is estab-
lished is still very limited.
Based primarily on in vitro evidence, it is believed that

HIV can only replicate in activated CD4+ T cells [8–12]. In
resting T cells, the virus can enter the cell but either cannot
complete reverse transcription [11] or can complete reverse
transcription at a much lower efficiency but cannot inte-
grate its cDNA into the host genome [13, 14]. The favored
model of latent reservoir formation is that HIV cannot dir-
ectly infect resting CD4+ T cells. Rather, activated CD4+ T
cells are infected and then revert to a resting phenotype
with integrated provirus to form the latent reservoir. Vari-
ous mechanisms were proposed and demonstrated to es-
tablish latent infection in these deactivating CD4+ T cells
(reviewed in [15]). A recent in vitro study provided evi-
dence that CD4+ T cells undergoing effector-to-memory
(activated-to-resting) transition allowed viral integration
but down-regulated gene transcription to favor latency for-
mation [16]. This is the traditional model to explain infec-
tion of resting CD4+ T cells by HIV and latency formation,
but it is not the only model, nor an exclusive model.
A newer model is gaining support in recent years

based on in vivo and ex vivo studies which have shown
that resting CD4+ T cells were productively infected
in vivo, or can be infected directly ex vivo [17–22]. One
of the studies found that resting CD4+ T cells support
HIV replication in lymphoid tissue (tonsil) explants,
whereas purified tonsillar resting CD4+ T cells did not
support HIV replication [23]. Another study by Chavez et
al. demonstrated that latent infection could be

achieved via direct infection of both activated and rest-
ing CD4+ T cells, with resting cells displaying a higher
propensity for latent as opposed to productive infection
[24]. They also found that CD4+ T cells isolated from
splenic and tonsillar lymphoid tissues had significantly
higher latent infection rates when compared to purified
CD4+ T cells isolated from peripheral blood, highlight-
ing the importance of the lymphoid environment in the
establishment of HIV latency. In addition, stimulation by
cytokines, chemokines, dendritic cells, or stromal fibro-
blasts can render resting CD4+ T cells permissive for
HIV infection and/or latency formation [25–28]. This
newer model advocates for direct infection of resting
CD4+ T cells, especially in the context of lymphoid tis-
sue or cytokine/chemokine interactions. The two models
for the formation of latent reservoir in resting CD4+ T
cells are not mutually exclusive, and they may both
occur in an HIV+ patient. However, in vivo, T cells do
not live alone; they are always surrounded by soluble
factors and other cell types. Therefore, it is extremely
important to further investigate the lymphoid tissue
microenvironment and cell-to-cell interactions within
those microenvironments for their role in inducing HIV
infection and latency.
Two studies by Choi et al. [29, 30] first showed that

stimulation by endothelial cells (EC) rendered resting
CD4+ T cells permissive for HIV replication while con-
tinuing to exhibit a resting phenotype. EC line the lymph-
atic vessels in the lymphoid tissues and have constant
interactions with T cells trafficking through them. This
was the first indication that EC, which physiologically
serve as antigen-presenting cells to T cells, particularly in
lymphoid microenvironments, might play a significant
role in infection of resting CD4+ T cells in vivo. In our
2013 study, we verified the findings that upon EC stimula-
tion, resting CD4+ T cells can be productively infected by
HIV while remaining in a resting phenotype [31]. We fur-
ther demonstrated that EC stimulation can result in latent
infection in resting CD4+ T cells. Initially, it was thought
that stimulations by EC required cell-cell contact and
were dependent upon MHC class II - TCR interactions
and interactions between CD58, an adhesion molecule
expressed by EC and CD2, an adhesion/co-stimulatory
molecule expressed by T cells [29, 30]. In our 2017 study,
we demonstrated that soluble factors secreted by EC can
promote both productive and latent infection of resting
CD4+ T cells, though not to the same level as stimulation
by cell-cell contact [32]. We also identified IL-6 to be a
key soluble factor involved in EC stimulation of resting
CD4+ T cells.
From the above-mentioned studies, we have demon-

strated the importance of EC in HIV infection and la-
tency formation in resting CD4+ T cells. However, the
EC used in the Choi studies and in our own studies were
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from human umbilical cords (HUVEC). They are consid-
ered macrovascular EC, whereas the EC that line the
lymphatic vessels in the lymph nodes are microvascular
EC. Phenotypical and physiological differences between
macrovascular and microvascular EC have previously
been observed, even within a single human organ [33]. It
has been demonstrated that microvascular EC show
lower adherence to other normal cell types [34] and can-
cer cells [35], respond more strongly to certain growth
factors [36], and respond to IL-1 and lipopolysaccharides
with higher sensitivity resulting in different chemokine
production [37] compared to macrovascular EC. Also,
HUVEC and microvascular lymphatic endothelial cells
have different expression levels for many molecules in-
cluding VEGFR-3 [38], CD31, and VE-cadherin [39]. Be-
cause the new model of direct resting CD4+ T cell
infection is based in a lymphoid context, studying T cell
communication with microvascular EC is of higher in
vivo relevance. Given that the study of communication
between T cells and EC in the context of HIV latency
has previously relied on macrovascular EC models,
which are known to differ from more relevant micro-
vascular EC models, in the present study we investigated
the effects of microvascular EC (lymphatic EC) stimula-
tion of resting CD4+ T cells in establishing HIV infec-
tion and latency.

Methods
Endothelial cells and in vitro infection assays
The two different types of endothelial cells used in this
study were human lymphatic endothelial cells (LEC) and
human umbilical vein endothelial cells (HUVEC or EC).
LEC were purchased from ScienCell Research Labora-
tories (isolated from human lymph nodes) and cultured
in media consisting of basal endothelial cell medium
combined with 5% fetal bovine serum (FBS and 1% peni-
cillin/streptomycin solution (P/S)). EC were purchased
from PromoCell (Germany) and cultured in M199 media
supplemented with 20% FBS and 1% P/S. Lymphatic
endothelial cell growth factors (ScienCell) were added to
LEC and endothelial cell growth factors (BD Biosciences)
were added to EC fresh every 3 days to a final concen-
tration of 50 μg/mL. When indicated, both types of
endothelial cells were pre-treated with IFN-γ (50 ng/mL)
(Invitrogen) for 3 days prior to the addition of resting T
cells, which induced the expression of MHC class II.
Endothelial cells were plated to 100% confluence and
300,000 resting T cells were co-cultured with LEC/EC
per well of a 24-well plate, or up to 5 million T cells per
well in a 6-well plate. Resting T cells were co-cultured
with LEC/EC for 1 day in RPMI 1640 + 10% FBS + 1%
Pen/Strep antibiotics (without LEC/EC growth factor or
IFN-γ) prior to overnight infection. The co-cultures
were maintained in the same media for the duration of

the experiments. Expressions of GFP and T cell activation
markers were examined on various days post infection
using flow cytometry. Antibodies for various activation
markers and CD58-PE were all purchased from BD
Biosciences, and used according to manufacturer’s recom-
mendations. For experiments on latent infections, flow cy-
tometric sorting was also done at various days post
infection. After sorting, the GFP- cells were cultured with
or without PMA (10 ng/mL) plus Ionomycin (1 μg/mL)
(both from Sigma) and Raltegravir (3.3 μM) (Selleck) for
2 days before flow cytometric analysis of GFP expression.
In experiments involving activated T cells, PBMC were ac-
tivated with phytohemagglutinin (PHA) and IL-2 (both
1 μg/mL) for 3 days prior to a negative bead depletion to
isolate the CD4+ T cells. The activated T cells were
co-cultured similarly to the resting T cells in the manner
described above with addition of IL-2 (1 μg/mL) to the
culture media.

Virus production
The procedure for creating the GFP reporter virus has
been previously described [31]. Briefly, the enhanced
green fluorescence protein (eGFP or GFP) reporter virus
was generated by cotransfecting HEK293T cells with a
plasmid encoding NL43-dE-GFP and a plasmid encoding
the HIV-1 envelope (pWE-CXCR4) using TrueFect
(United Bio-systems) at a 2:1 ratio (pNL43:pWE). Super-
natants were collected after 72 h and filtered through a
0.22 μm membrane to remove cell debris. Virus particles
were pelleted using Lenti-X concentrator (Clontech
Latoratories) by following the manufacturer’s instruc-
tions and resuspended with 1/27 of the original volume
of RPMI + 10% FBS.

Separation of various T cell populations
Human peripheral blood mononuclear cells (PBMC)
were obtained from HIV- blood by centrifugation
through a Ficoll-Hypaque density gradient at 300 x g for
40 min. Activated CD4+ T cells were purified from
PBMC using Miltenyi microbeads (a negative depletion
kit for isolating CD4+ T cells). Resting CD4+ T cells
were purified from PBMC similarly with the addition of
biotin labeled anti-CD25 and anti-HLA-DR antibodies
to the Miltenyi depletion cocktail mix and subsequently
increasing the amount of anti-biotin microbeads added.
RO+/RA- memory T cells and RO−/RA+ naïve T cells
were also purified using their respective Miltenyi nega-
tive depletion kits. Similarly, biotin labeled anti-CD25
and anti-HLA-DR antibodies were added, as were in-
creased anti-biotin microbeads.

Detection of latent infections
As described previously [31], in order to detect latent in-
fection, infected T cells were sorted for GFP-negative
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cells on day 8 post-infection. GFP-negative cells were
then cultured alone or activated with PMA and Ionomy-
cin for 2 days along with the integrase inhibitor raltegra-
vir to block any integration during activation. GFP
expressions were then compared in cultures with or
without activation.

Detection of IL-6 using ELISA
Supernatants from cell culture wells were collected and
frozen at − 80 °C. ELISA kits for IL-6 were purchased
from BioLegend, and experiments were performed ac-
cording to manufacturer’s instructions. 100 μL of super-
natant was used from each sample in duplicates.

Blocking IL-6 and CD2
Antibodies were used to block the effects of IL-6 and CD2
signaling in the resting T cell and LEC/EC co-cultures.
When blocking IL-6, LEAF Purified anti-human IL-6 anti-
body (BioLegend) was added to the wells at various con-
centrations immediately after introducing resting CD4+ T
cells to LEC/EC. For CD2 blocking, resting CD4+ T cells
were incubated with LEAF Purified anti-human CD2
antibody (BioLegend) at various concentrations for 1 h
prior to being co-cultured with LEC/EC. For both IL-6
and CD2 blocking, the antibody was refreshed 1 day
post-infection. Infection levels were measured 6–8 days
after infection.

Ethical approval
This study was approved by the Internal Review Board
(IRB) of Calvin College, reference number: 11–010.

Results
Kinetics of viral infection in resting CD4+ T cells co-cultured
with lymphatic endothelial cells compared with HUVEC
Infection in resting CD4+ T cells stimulated by endothe-
lial cells (HUVEC) takes place much slower than in acti-
vated T cells [31]. As we began investigating the effect of
lymphatic endothelial cells (LEC) on resting T cells, we
compared viral infection kinetics in LEC-stimulated rest-
ing T cells with those in HUVEC-stimulated T cells.
Resting CD4+ T cells were isolated from HIV-negative do-
nors and co-cultured with HUVEC (EC+ and EC-), LEC+
and LEC- (previously treated with or without IFN- γ re-
spectively). Treatment of IFN- γ for 3 days induced ex-
pression of MHC II on LEC, similar to HUVEC. After
1 day of co-culturing, T cells were infected with the GFP
reporter virus, and infection rates (% GFP+) were exam-
ined on various days post-infection. As shown in Fig. 1a,
viral infection in HUVEC-stimulated resting T cells plat-
eaued or even slightly decreased after day 6 (as was seen
previously [31]), but for LEC-stimulated resting T cells, in-
fection rates often continued to go up after day 6,
especially for cells stimulated by LEC+. The proportion of

GFP-expressing cells on any given day post infection was
likely the combination of cell death in some infected cells
(decrease in GFP+) and the emergence of new
GFP-expressing cells (increase of GFP+). Here we gated on
the live cells (higher forward scatter and lower side scatter)
while assessing the level of GFP. It represents the propor-
tion of live GFP producing cells at that moment, not the
accumulative proportion of infected cells. Even though the
overall infection rates in LEC-stimulated resting T cells
were lower than the infection rates in HUVEC-stimulated
T cells, on each of the 3 days measured, infection rates
were substantially higher in LEC-stimulated resting T cells
than in resting T cells alone (statistically significant, Stu-
dent’s T-tests, p values 1.6 × 10− 6, 1.0 × 10− 7, and 7.8 × 10−
5 on days 3, 6, and 8, respectively, LEC- vs. R). Moreover,
similar to HUVEC stimulation, LEC- stimulation resulted
in increased infection in resting T cells, at similar levels or
slightly lower than those in T cells stimulated by LEC+.
Interestingly, while EC+ stimulation always resulted in
higher infection rates than EC- stimulation [31], sometimes
LEC- stimulation would result in higher infection rates
than stimulation by LEC+, particularly on day 6 or earlier
post infection (Fig. 1b). On day 8 post infection, LEC+
stimulation seemed to result in higher infection rates than
LEC- (Fig. 1b). The increase of infection rates from day 6
to day 8 for LEC+ stimulated T cells can be two-fold or
more in some donors (Fig. 1b). In Fig. 1c, mean fluores-
cence intensity data of the infected cells from day 8 post
infection are shown. EC+ induced the most increase com-
pared with R, though EC-, LEC−/+ all had small but statis-
tically significant increase (Student’s T-tests, p values 3.9 ×
10–8, 7.6 × 10–5, 0.004, 0.03 respectively). It was not sur-
prising to see with EC+ stimulation the GFP intensities
were higher because a small proportion of the resting T
cells were activated by EC+.

Resting T cells stimulated by LEC can be productively
infected by HIV while remaining in resting state
From our last study, we knew resting CD4+ T cells stim-
ulated by HUVEC remain in a resting state while being
infected [31]. To examine whether LEC stimulation
would activate resting T cells, we measured cell activa-
tion markers CD25, CD69, and HLA-DR in LEC stimu-
lated resting T cells on day 6 post infection. As shown in
Fig. 2a, less than 0.6% of the T cells co-cultured with ei-
ther LEC- or LEC+ expressed activation markers. In T
cells co-cultured with LEC+, there were typically slightly
more cells expressing activation markers than those cul-
tured alone or with LEC-. These cells may recognize
allogeneic MHC class II on LEC+ and become activated.
A similar phenomenon was observed with HUVEC
stimulation as well. However, the proportion of T cells
that were infected was always significantly higher than
the proportion of cells that were activated (compare Fig. 2a
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and b). Mean fluorescence intensity data for the infected
T cells analyzed in Fig. 2b can be seen in Fig. 2c. There
were slight increases of GFP intensities in LEC stimulated
T cells, but they were not statistically significant.

Resting memory T cells are preferentially infected
compared to naïve T cells when co-cultured with LEC, but
the pattern differs from HUVEC
In our previous study, we found that although naïve T
cells co-cultured with HUVEC still showed greater in-
fectivity than naïve T cells cultured alone, memory T
cells were infected at much higher rates than naïve T
cells in EC-stimulated cultures (both EC+ and EC-). This
suggested that signals provided by EC to memory T cells
were able to overcome the restrictions to a much greater
extent than in naïve cells. This is consistent with the fact
that EC express CD58 but not the co-stimulatory mole-
cules CD80/86 and thus are better at stimulating mem-
ory T cells than naïve T cells. Naïve T cells generally
require a stronger co-stimulatory signal (e.g. through
CD80/86) for activation than memory T cells (reviewed
in [37]).

In our current study, we examined the effects of LEC
stimulation on the infection of resting memory and
naïve T cells. Interestingly, we noticed a difference in the
pattern of infection of memory cells co-cultured with
LEC as opposed to HUVEC. As shown in Fig. 3a, we
found that memory T cells stimulated by LEC- showed
higher rates of infection than memory T cells stimulated
by LEC+, suggesting that LEC stimulation of memory T
cells is not dependent on interactions between MHC II
and TCR. By contrast, in HUVEC stimulation, memory
T cells stimulated by EC+ showed greater infection rates
than memory T cells stimulated by EC- (Fig. 3a and
[31]). For naïve T cells, we observed that LEC+ stimula-
tion led to greater infection rates than LEC- stimulation
which was similar to the pattern observed in HUVEC
stimulation (Fig. 3a). Also similar to HUVEC, we ob-
served that memory T cells showed greater infection
rates than naïve T cells when co-cultured with both LEC
+ and LEC- (Fig. 3a). The same trends observed in the
analysis of GFP expression (Fig. 3a) are reflected in the
mean fluorescence intensity data of infected cells pre-
sented in Fig. 3b.

A B

C

Fig. 1 Kinetics of viral infection in resting CD4+ T cells co-cultured with LEC compared with HUVEC. Resting T cells were cultured alone, with human
umbilical vein endothelial cells (EC), or human lymphatic endothelial cells (LEC). + and - indicate treatment with or without IFN-γ respectively in EC or
LEC. All T cells were infected with an HIV reporter virus expressing GFP 1 day after co-culture, and the %GFP+ cells were measured a on days 3, 6, and
8 post-infection. Infection rates were substantially higher in LEC-stimulated resting T cells than in resting T cells alone (statistically significant, Student’s
T-tests, p values 1.6 × 10− 6, 1.0 × 10− 7, and 7.8 × 10− 5 on days 3, 6, and 8, respectively) b A comparison of infection levels in LEC+ and LEC- stimulated
T cells on day 6 and 8 post-infection. Samples were taken in triplicates and means+/− standard errors are plotted. Data shown are representative of
seven independent experiments yielding similar results. c Mean fluorescence intensity data for GFP+ cells taken on day 8 post-infection. Samples were
taken in triplicates and means+/− standard errors are plotted. Data shown are representative of seven independent experiments yielding similar results
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Resting memory T cells remain in resting phenotype after
LEC stimulation
Our previous study has demonstrated that the majority
of the resting T cells co-cultured with EC remain in a
resting state throughout the course of infection [31].To
similarly ensure that memory T cells were not activated
after LEC stimulation, we measured the expression
levels of activation markers (CD25, HLA-DR and
CD69) in resting memory (and naïve) T cells after LEC
stimulation. As seen in Fig. 3a, while the proportion of
memory cells expressing activation markers was higher
in LEC+ stimulated T cells than unstimulated T cells
(in both RO and RA cells), it still accounted for a small
percentage of the total population of memory cells.
When GFP expressions (representing infection rates)
were plotted against individual activation markers
CD25, HLA-DR and CD69 for LEC+ stimulated mem-
ory T cells, one can see that while a small portion of
the infected memory cells were positive for each activa-
tion marker tested, the majority of cells expressing GFP
remained in a resting state during the course of infec-
tion (Fig. 3d).

Latent viral infection in resting T cells co-cultured with LEC
From our last study, we knew HUVEC-stimulated resting
CD4+ T cells harbor latent infection [31]. To examine
whether LEC stimulation would result in latent infection,
we followed a similar procedure as was used with HUVEC.
Resting CD4+ T cells were first co-cultured with LEC and
then infected just as in productive infection experiments.
On day 8 or 9 post-infection, after most unintegrated viral
DNA had decayed [14] and most integrated virus had
expressed GFP, GFP negative T cells were sorted out and
activated with PMA and ionomycin (PMA/I) for 2 days.
PMA/I is known to reactivate latent HIV, and integrase in-
hibitor raltegravir was also included in the cultures to pre-
vent de novo viral integration during the 2 day culturing.
Because some cells express GFP very slowly, a small
amount of cells that were GFP negative at the time of sort-
ing began to express GFP without stimulation over the
next 2 days. As shown in Fig. 4a, there was some GFP ex-
pression in cells without PMA/I stimulation, but there was
an increase of GFP expression after PMA/I stimulation,
demonstrating the expression of latent virus upon activa-
tion of T cells. The increase of GFP expression after PMA/

A B

C

Fig. 2 Resting T cells stimulated by LEC can be productively infected while remaining in resting state. Resting T cells were cultured alone or with
human lymphatic endothelial cells (LEC). + and - indicate treatment with or without IFN-γ respectively in LEC. All T cells were infected with an HIV
reporter virus expressing GFP 1 day after co-culture. On day 6 post-infection, T cells were stained to test for the presence of three activation markers:
CD25-PE, CD69-APC, and DR-PerCP. Levels of activation are shown in (a) and levels of infection (%GFP+) are shown in (b). Samples were taken in
triplicates and means +/− standard errors are plotted. Data shown are representative of three independent experiments yielding similar results. c Mean
fluorescence intensity of the GFP+ cells, measured on day 6 post-infection, is shown. Samples were taken in triplicates and means +/− standard errors
are plotted. Data shown are representative of three independent experiments yielding similar results
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A

B

C

D

Fig. 3 Resting memory T cells are preferentially infected than naïve T cells when co-cultured with LEC. a Infection in naïve and memory T cells stimulated
with LEC and HUVEC (EC). Naïve resting T cells and memory resting T cells were each cultured alone, with human umbilical vein endothelial cells (EC), or
human lymphatic endothelial cells (LEC). + and - indicate treatment with or without IFN-γ respectively in EC or LEC. All T cells were infected with an HIV
reporter virus expressing GFP 1 day after co-culture, and the %GFP+ cells were measured on day 6 post-infection. Samples were taken in triplicates and
means+/− standard errors are plotted. Data shown are representative of eight independent experiments yielding similar results. b Mean fluorescence data
of the GFP+ cells in the experiment described in (A) are presented. Mean fluorescence intensity data were measured on day 6 post-infection. Samples
were taken in triplicates and means+/− standard errors are plotted. Data shown are representative of eight independent experiments yielding similar
results. c Activation in naïve and memory T cells stimulated by LEC. On day 6 post-infection, activation levels were examined in T cells by measuring the
presence of three activation markers: CD25, HLA-DR, and CD69. d Same experiment as in (c). CD25, HLA-DR, and CD69 levels were individually plotted
against GFP expression. Samples were taken in triplicates and means +/− standard errors are plotted. Data shown are representative of four independent
experiments yielding similar results
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I stimulation was shown in resting T cells alone and rest-
ing T cells co-cultured with either LEC- or LEC+ (Fig. 4b).
The increase was most numerically dramatic for the LEC-
co-culture (Student’s T test, p value 0.01) but was also
statistically significant for the resting alone (R) (Student’s T
test, p value 6 × 10− 6) and LEC+ cultures (Student’s T test,
p value 0.02). These results signify that LEC stimulation re-
sults in post-integration latent infection in resting T cells.

IL-6 is involved in the interaction between LEC and
resting CD4+ T cells
The pro-inflammatory cytokine IL-6 was found to be pro-
duced by HUVEC and was involved in HUVEC stimulation
of resting T cells [32]. To examine whether IL-6 was in-
volved in LEC stimulation as well, we decided to block it
with an anti-IL-6 antibody in LEC-T cell co-cultures. LEC
were plated for at least 3 h before resting CD4+ T cells were
added to the LEC after supernatants were removed from
plated LEC. At the same time, an anti-human IL-6 antibody
was added to the co-culture at various concentrations (5

and 10 μg/mL). Isotype control antibodies were also in-
cluded as a negative control. After 1 day, T cells stimulated
by LEC, with or without anti-IL-6 antibody, were infected,
and GFP levels were measured on day 6 or 7 post-infection.
As seen in Fig. 5a, the addition of anti-IL-6 antibody re-
sulted in significantly lower infection rates in resting cells
stimulated by LEC- and LEC+. In the case of resting cells
stimulated by LEC-, the addition of anti-IL-6 antibody
nearly reduced the infection rates to the level of unstimu-
lated resting cells, suggesting that IL-6 was almost solely re-
sponsible for the effect of LEC- stimulation. For LEC+
stimulation, however, addition of anti-IL-6 antibody did not
completely reduce the infection level to that of unstimulated
resting cells, suggesting that for LEC+ cells, factors other
than IL-6 were also involved in stimulation of resting T cells.

IL-6 levels are lower in LEC-stimulated T cells than EC-
stimulated T cells
Once we knew IL-6 is involved in EC and LEC stimula-
tion of resting CD4+ T cells, we set out to measure IL-6

A

B

Fig. 4 Latent viral infection in CD4+ resting T cells co-cultured with human lymphatic endothelial cells. Resting CD4+ T cells were cultured alone or with
human lymphatic endothelial cells (LEC). + and - indicate treatment with or without IFN-γ respectively in LEC. All T cells were infected with an HIV reporter
virus expressing GFP 1 day after co-culture. On day 8 post-infection, GFP negative cells were sorted and cultured with or without PMA/Ionomycin and
raltegravir for 2 days to reactivate latent virus while preventing de novo infection. Following 2 days of reactivation, %GFP+ cells were measured. a GFP
expression levels in PMA/I stimulated and unstimulated resting T cells after sorting from LEC- co-cultures. b GFP expression comparisons in resting T cell
alone, LEC+ and LEC- co-cultures with and without PMA/I stimulation. P values from Student’s T tests comparing PMA/I stimulated cells to their
unstimulated counterparts were 6 × 10− 6, 0.02, and 0.01, respectively. Data shown are representative of three independent experiments yielding similar
results. Samples were taken in quadruplicates and means+/− standard errors are plotted. *Student t-test; p< 0.05
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levels at the end of infection (day 6 post infection) in T
cells co-cultured with EC or LEC using ELISA, to see if
IL-6 levels correlated with infection levels. We found
that EC co-cultures had more IL-6 than LEC co-cultures
in general (Fig. 5b). This correlates with what we know
of their respective infection rates (Fig. 1a). More inter-
estingly, while EC+ co-cultures generally had more IL-6
than EC- ones (corresponding to infection rates), LEC-
co-cultures had more IL-6 than LEC+ co-cultures
(Fig. 5b). This may indicate that in T cells stimulated by
LEC+, other factors in addition to IL-6 are playing a role
in infection, which is consistent with our findings in
IL-6 blocking experiments (Fig. 5a).

Involvement of CD2 signaling in EC and LEC stimulation
of resting CD4+ T cells
Originally, Choi et al. found CD2-CD58 interaction to be
involved in EC stimulation of resting CD4+ T cells. ECs
express CD58, which is a known co-stimulatory molecule
that binds to CD2 on T cells, and so do LECs (Fig. 6a).
We used various concentrations (2, 5 and 10 μg/mL) of
CD2 blocking antibodies to assess the involvement of
CD2 signaling in EC stimulation of T cells. We found that
infection in EC+ stimulated T cells was significantly
blocked (by about 50%) at all antibody concentrations,
while infection in EC- stimulated T cells was largely un-
affected (Fig. 6b). When anti-IL-6 antibody was combined
with anti-CD2 antibody, there was added blocking effect
for infection in EC+ stimulated T cells, but for EC- stimu-
lated T cells, there was no difference between anti-IL-6
antibody alone and with both antibodies (Fig. 6c). This

further demonstrated the lack of involvement of CD2 in
EC- stimulation of resting T cells. We then examined
whether CD2 signaling is involved in LEC stimulation of
resting T cells. For LEC- stimulated T cells, similar to EC-
stimulated T cells, blocking CD2 had no effect on infec-
tion rates; whereas for LEC+ stimulated T cells, unlike EC
+ stimulated T cells, there were consistently no effects or
just a slight decrease (not statistically significant) in infec-
tion rates with CD2 antibodies (Fig. 6d).

LEC stimulation increases infection rates in activated CD4
+ T cells
There are some evidences that activated CD4+ T cells may
also play a role in HIV persistence [40], and a study showed
that mucosal stromal fibroblasts increased HIV infection
rates in activated T cells [28]. Therefore, we sought to in-
vestigate the effects of LEC stimulation on the infection of
activated CD4+ T cells. We activated donor PBMC with
PHA and IL-2 for 3 days before isolating total CD4+ Tcells.
We then co-cultured the activated CD4+ T cells alone
(ACT), with LEC+, or with LEC- and observed the corre-
sponding infection rates 3 days post infection. We found
that LEC stimulation dramatically increased HIV infection
rates in the activated T cells, with T cells stimulated by
LEC- showing the highest infection rates followed by those
stimulated by LEC+ and those left unstimulated (Fig. 7a).
Significant differences were observed between all stimula-
tion conditions; ACT-LEC-: p = 1 × 10− 10, ACT-LEC+: p =
6.4 × 10− 9, LEC + -LEC-: 5.36 × 10− 8. A similar trend was
observed was observed when analyzing the mean fluores-
cence intensity of the cells in each treatment group; cells

A B

Fig. 5 IL-6 is involved in interactions between human lymphatic endothelial cells and resting CD4+ T cells. a Resting CD4+ T cells were cultured alone
or with human lymphatic endothelial cells (LEC). + and - indicate treatment with or without IFN-γ respectively in LEC. At the time of co-culture, anti-
human IL-6 antibody was added at various concentrations (5 and 10 μg/mL). Isotype control antibodies were also included as a negative control. All T
cells were infected with an HIV reporter virus expressing GFP 1 day after co-culture. %GFP+ cells were measured on day 7 post-infection. Data shown
are representative of three independent experiments yielding similar results. Samples were taken in triplicates and means+/− standard errors are plotted.
*Student t-test; p< 0.05. b Differential IL-6 levels in HUVEC-stimulated and LEC-stimulated resting T cells. Resting T cells were cultured alone, with human
umbilical vein endothelial cells (EC), or human lymphatic endothelial cells (LEC). + and - indicate treatment with or without IFN-γ respectively in EC or
LEC. All T cells were infected with an HIV reporter virus expressing GFP 1 day after co-culture, and supernatants were taken for ELISA analysis on day 6
post-infection. Samples were taken in triplicates and means+/− standard errors are plotted. Data shown are representative of four independent
experiments yielding similar results
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stimulated by LEC- had the highest mean fluorescence in-
tensity followed by LEC + −stimulated cells and unstimu-
lated cells (Fig. 7b). ACT-LEC-: p = 7.26 × 10− 8, ACT-LEC
+: p = 7.71 × 10− 9, LEC + -LEC-: 0.0015.

Discussion
In this study, we demonstrated that LEC stimulation
could promote direct HIV infection of resting CD4+ T
cells, just as HUVEC stimulation did ([31, 32]). We were

A

B C

D

Fig. 6 Differential involvement of CD2 in HUVEC and LEC stimulation of resting T cells. a CD58 expression in HUVEC (EC) and LEC. EC and LEC were
stimulated with or without IFN-γ for 3 days (+/− respectively), and CD58 expressions were measured. b CD2 involvement in HUVEC stimulation of resting
CD4+ T cells. Resting CD4+ T cells were cultured alone as a control or with human umbilical vein endothelial cells (EC). One hour before co-culturing
with LEC, CD2 blocking antibodies were added at various concentrations (2, 5, and 10 μg/mL) to resting CD4+ T cells. Isotype control antibodies were
also included as a negative control. All T cells were infected with an HIV reporter virus expressing GFP 1 day after co-culture. %GFP+ cells were measured
on day 6 post-infection. Samples were taken in triplicates and means+/− standard errors are plotted. Data shown are representative of four independent
experiments yielding similar results. *Student t-test; p < 0.05 c Similar to b, with both anti-CD2 and anti-IL-6 antibodies. One hour before co-culture, CD2
blocking antibodies (2 μg/mL), IL-6 blocking antibodies (5 μg/mL), and a combination of CD2 blocking antibodies and IL-6 blocking antibodies were
added. Isotype control antibodies were also included as a negative control. d CD2 involvement in LEC stimulation of resting CD4+ T cells. Resting T cells
were cultured alone, with human lymphatic endothelial cells (LEC). One hour before co-culture, CD2 blocking antibodies, IL-6 blocking antibodies, and a
combination of CD2 blocking antibodies and IL-6 blocking antibodies were added at indicated concentrations. Isotype control antibodies were also
included as a negative control. All T cells were infected with an HIV reporter virus expressing GFP 1 day after co-culture. %GFP+ cells were measured on
day 6 or 7 post-infection. Samples were taken in triplicates and means+/− standard errors are plotted. Data shown are representative of five independent
experiments yielding similar results. *Student t-test; p < 0.05
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able to confirm that LEC stimulation rendered resting
CD4+ T cells much more prone to infection than these
T cells alone (Fig. 1). Most importantly, LEC stimulation
also increased latent infection in resting T cells (Fig. 4),
similar to HUVEC stimulation, which speaks to the im-
portance of the involvement of endothelial cells in HIV
persistence.
Other similarities between LEC stimulations and

HUVEC stimulations include the following: the stimulated
T cells remained largely un-activated (Fig. 2 and Fig. 4b)
and showed slower infection kinetics than infection in acti-
vated T cells (Fig. 1a); among EC-stimulated T cells, mem-
ory T cells were preferentially infected, even though naïve
T cells also had increased infection rates compared with
un-stimulated T cells (Fig. 3a); and IL-6 is involved in the
interaction between T cells and endothelial cells (Fig. 5a).
However, we also found significant differences in HIV

infection of LEC-stimulated T cells compared with
EC-stimulated T cells. Previous studies utilizing macrovas-
cular endothelial cells have maintained that to achieve
highest infection levels, EC stimulation of resting T cells
requires that EC express MHC II [26, 27]. Indeed, for
HUVEC stimulation in our studies, EC+ always induced
more infection than EC- in any type of T cells, whether
memory or naive. Strikingly, we observed that memory T
cells stimulated by LEC- showed higher rates of infection
than memory T cells stimulated by LEC+ (Fig. 3a). In con-
trast to HUVEC stimulation, this indicates that LEC
stimulation of memory T cells is not dependent on MHC
II – TCR interactions. The interactions between MHC II
on the EC+/LEC+ and TCR on the T cells are slightly arti-
ficial in these in vitro studies, since EC+/LEC+ used in
our experiments were not from the same donor as the T
cells; hence there were low levels of mixed lymphocyte re-
actions. In vivo, T cells do not respond to self MHC, thus

there is no mixed lymphocyte reaction involved. Since
EC-/LEC- do not express MHC II, and there were no
mixed lymphocyte reactions involved, the fact that LEC-
promotes high level of HIV infection in resting T cells
suggests that MHC II – TCR interactions are not required
in LEC stimulation of T cells, which may have more in
vivo relevance. In addition, we were very intrigued by the
finding that LEC could induce significant infection in
memory CD4+ T cells, both productively and in latent in-
fection. Memory T cells, as opposed to naïve T cells, are
the majority of CD4+ T cells harboring latent reservoir in
vivo, and LEC stimulation may provide a mechanism for
latent reservoir formation in vivo.
Our results suggest that IL-6 is involved in the inter-

action between LEC- and T cells (Fig. 5a). However, IL-6
alone does not induce as high of an infection level as
EC- or LEC- ([32] and unpublished data). This suggests
that IL-6 may be necessary but not sufficient in inducing
high level of infection, or there are additional factors in-
volved in the stimulation. Further studies are required to
investigate the involvement of other factors in addition
to IL-6. It was also interesting to discover that LEC
co-cultures had much less IL-6 than EC co-cultures,
even though IL-6 was clearly involved in LEC stimula-
tion of resting CD4+ T cells (Fig. 5b). This again
highlighted the importance of investigating resting T cell
stimulation by microvascular endothelial cells as this
interaction has higher in vivo relevance than stimulation
by macrovascular endothelial cells.
Another difference we observed was the lack of involve-

ment of CD2 in interactions between LEC and T cells
(Fig. 6d), given that CD2 was involved in EC+ interactions
with T cells (Fig. 6b and c, and [30]). Since LEC also ex-
press CD58 (Fig. 6a), we wondered why LEC+ did not
stimulate T cells similarly to EC+. As a matter of fact, EC-

A B

Fig. 7 LEC stimulation increases infection rates in activated CD4+ T cells. PBMC were activated with PHA (1 μg/mL) for 3 days before isolating CD4+ T
cells by bead depletion. The activated T cells were then cultured alone, with LEC-, or LEC+. All T cells were infected with an HIV reporter virus expressing
GFP 1 day after co-culture. a %GFP+ cells were measured 3 days after infection. Samples were taken in triplicates and means+/− standard errors are
plotted. Data shown are representative of four independent experiments yielding similar results. Student’s T tests showed significant differences between
cells by stimulation. ACT-LEC-: p = 9.99 × 10− 11, ACT-LEC+: p= 6.40 × 10− 9, LEC + -LEC-: 5.36 × 10− 8. b Same experiment as (A). Mean fluorescence
intensities of GFP+ cells are shown. Samples were taken in triplicates and means+/− standard errors are plotted. Data shown are representative of four
independent experiments yielding similar results. Student’s T tests showed significant differences between cells by stimulation. ACT-LEC-: p = 7.26 × 10− 8,
ACT-LEC+: p = 7.71 × 10− 9, LEC + -LEC-: .0015
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and LEC- both express comparable levels of CD58 to EC+
and LEC+, but anti-CD2 blocking antibody had no effect
on their stimulations of T cells. It is possible that in EC-,
LEC-, and LEC+ stimulations of resting T cells there were
redundant factors involved, so blocking CD2 did not affect
infection rates; whereas in EC+ cells, the redundant factor
was absent, and CD2 was the only molecule involved in
cell-cell contact, thus blocking CD2 had an effect. It is also
possible, and probably more likely, that two molecules
were needed in stimulation by EC+: CD2 and another fac-
tor; thus, blocking CD2 would reduce the infection rates.
Because EC-, LEC- and LEC+ lacked the other factor they
therefore all induced lower infection rates than EC+, and
blocking CD2 had no effect since CD2 alone could not in-
duce more infection. Either way, this again highlighted the
fact that there were differences between HUVEC and
LEC, and further studies need to be carried out to investi-
gate the interactions between CD4+ T cells and LEC.
We also demonstrated that LEC stimulation promotes

infection in activated CD4+ T cells (Fig. 7). This finding is
relevant given the growing evidences that cell-cell interac-
tions are important in HIV infection, and the recognition
of the role of activated CD4+ T cells play in HIV infection
and latency. Our results indicate the significance of study-
ing the intercellular interactions of both resting and acti-
vated CD4+ T cells in the lymphoid context.
It should be noted that there are several limitations to

our study. Firstly, while our novel model of LEC stimula-
tion of resting CD4+ T cells during HIV infection is more
physiologically relevant than the HUVEC model, an in vitro
model is incapable of perfectly representing in vivo condi-
tions. Also, although clear patterns emerged, because we
used human primary cells, inherent donor to donor varia-
tions were observed in our experiments. In order to show
the patterns clearly, for all the data in this paper we chose
to utilize a single representative donor to illustrate the
same patterns seen across multiple donors and experi-
ments, rather than compiling data from all donors together.
Finally, our study utilized a pseudotyped virus. While such
a virus enabled us to investigate latent infection with GFP
sorting, it may not represent in vivo strains perfectly. Al-
though previous research has demonstrated that EC stimu-
lation of CD4+ T cells promoted HIV infection with both a
pseudotyped virus and a primary isolate [26], similar exper-
iments need to be done with clinical isolates in the future
to confirm our findings in LEC. In addition, while we were
able to gain insight into certain interactions between LEC
and the T cells, further studies are needed to decipher add-
itional mechanisms allowing direct HIV infection of resting
T cells upon LEC stimulation. We are investigating poten-
tial molecules and mechanisms through results from RNA-
seq experiments, where we compared gene expressions in
resting T cells with and without stimulation by endothelial
cells, and we hope to report positive findings soon.

Conclusions
Overall, with this study, we confirmed that endothelial
cells do promote HIV infection of resting CD4+ T cells,
both productively and with latent infection, while keeping
the T cells in a resting state. Our findings continue to
highlight the significance of endothelial cells as well as the
lymphoid tissue microenvironment in HIV persistence.
We also observed significant distinctions between T cell
stimulation by macrovascular EC (HUVEC) and micro-
vascular lymphatic endothelial cells (LEC), most notably
the lack of involvement of MHC II – TCR interactions in
LEC stimulation of resting memory T cells. In this study,
we demonstrated that microvascular lymphatic endothe-
lial cells, which physiologically interact with T cells in vivo,
could stimulate CD4+ resting T cells and promote HIV in-
fection similarly to macrovascular HUVEC as previously
observed. We also showed that LEC stimulation promotes
HIV infection in activated CD4+ T cells. These conclu-
sions provide insight into the model of direct infection of
resting T cells and open doors for further investigation
into the role of interactions between endothelial cells and
both resting and activated T cells in HIV infection and
persistence.
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